Buckling Behavior of Clamped Laminated Composite Cylindrical Shells under External Pressure Using Finite Element Method

2011 ◽  
Vol 121-126 ◽  
pp. 43-47
Author(s):  
Behzad Abdi ◽  
Hamid Mozafari ◽  
Ayob Amran ◽  
Roya Kohandel

In this study, the elastic buckling behavior of clamped laminated composite cylindrical shells under external pressure was studied. The Finite Element Method (FEM) was used to predict the critical elastic buckling pressure behavior when composite cylindrical shells were subjected to external pressure. The edges of the cylindrical shell ends were completely constrained to simulate clamped end conditions. The influences of parameters such as wall thickness, fiber angle, number of layers and L/R ratio of laminated composite cylindrical shells on critical buckling pressure were studied. It has been found that the under external pressure, the thickness and the fiber angle of the layers have the most significant effect on the critical buckling pressure.

2018 ◽  
Vol 877 ◽  
pp. 453-459
Author(s):  
B. Angelina Catherine ◽  
R.S. Priyadarsini

Buckling is a prominent condition of instability caused to a shell structure as a result of axial loadings. The process of buckling becomes more complex while analyzing thin walled structures like shells. Today such thin walled laminated composite shells are gaining more importance in many defense and industrial applications since they have greater structural efficiency and performance in relation to isotropic structures. Comprehensive understanding of the buckling response of shell structures is necessary to assure the integrity of these shells during their service life. The presence of defects, such as cracks, may severely compromise their buckling behavior and jeopardize the structural integrity. This work aims in conducting numerical analysis of cracked GFRP (Glass fibre-reinforced polymer) composite cylindrical shells under combined loading to study the effect of crack size on the buckling behavior of laminated composite cylindrical shells with different lay-up sequences. The numerical analyses were carried out using the finite element software, ABAQUS in order to predict the buckling behaviour of cracked laminated composite cylinders subject to different combinations of axial compression, torsion, internal pressure and external pressure from the interaction buckling curves.


2011 ◽  
Vol 121-126 ◽  
pp. 340-345
Author(s):  
Behzad Abdi ◽  
Hamid Mozafari ◽  
Ayob Amran ◽  
Roya Kohandel

In this study, the elastic buckling behavior of general dome ends under presumed temperature distribution and external pressure was studied. The Finite Element Method (FEM) was used to predict the elastic buckling pressure behavior when the domes were subjected to various operating temperatures. The freedom of the edges of the dome ends was completely restricted to simulate clamped end conditions. The four-centered ellipse method was used to construct the geometry of the dome ends. The influence of geometrical parameters such as thickness, knuckle radius, and the ratio of minor axis to the major axis of dome ends and the effect of temperature on critical buckling pressure of hemispherical, ellipsoidal, and torispherical dome ends were studied. It has been found that the under thermal condition, the thickness and the shape of the domes have the most significant effect on the critical buckling pressure. Two models of torispherical and ellipsoidal dome ends are analyzed by using finite element analysis.


2011 ◽  
Vol 121-126 ◽  
pp. 48-54 ◽  
Author(s):  
Behzad Abdi ◽  
Hamid Mozafari ◽  
Ayob Amran ◽  
Roya Kohandel ◽  
Ali Alibeigloo

In this study, the buckling behavior of optimum laminated composite cylindrical shells subjected to axial compression and external pressure are studied. The cylindrical shells are composed of multi orthotropic layers that the principal axis gets along with the shell axis (x). The number of layers and the fiber orientation of layers are selected as optimization design variables with the aim to find the optimal laminated composite cylindrical shells. The optimization procedure was formulated with the objective of finding the highest buckling pressure. The Genetic Algorithm (GA) and Imperialist Competitive Algorithm (ICA) are two optimization algorithms that are used in this optimization procedure and the results were compared. Also, the effect of materials properties on buckling behavior was analyzed and studied.


1999 ◽  
Vol 21 (2) ◽  
pp. 116-128
Author(s):  
Pham Thi Toan

In the present paper, the goffered multilayered composite cylindrical shells is directly calculated by finite element method. Numerical results on displacements, internal forces and moments are obtained for various kinds of external loads and different boundary conditions.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Huan Sheng Lai ◽  
Kang Lin Liu

Shells and tubes usually fail in the form of buckling under external pressure. Charts are used in the design of shells and tubes in the standards of ASME VIII-1 and EN13445-3 and these simplify the calculation process, while the proportional law is a more effective and simple method. In this paper, the relationships between the proportional law and the charts used in the standards were researched; finite element method (FEM) was used to compare the accuracies of the proportional law and the charts. It was theoretically proved that the proportional law and the charts were using essentially the same method to calculate the critical buckling pressure; they were different forms of the same dimensionless tension stress–strain curves. The simulation results showed that the proportional law and the charts had effectively equal accuracies in calculated critical buckling pressures. Therefore, the proportional law can be a candidate method included in the standards for the design of shells and tubes under external pressure.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Krzysztof Magnucki ◽  
Jerzy Lewinski ◽  
Rafal Cichy

The paper is a review work devoted to dished heads of various meridian shapes. Geometry of the shells of revolution, the membrane state, and the edge effect occurring in the shells are described. Exemplary analytical and numerical finite element method (FEM) studies of torispherical, ellipsoidal, Cassini-ovaloidal, and untypical special dished heads are presented. The results of the above-mentioned two methods are compared. Moreover, numerical research of elastic buckling of the above-mentioned selected heads under external pressure is carried out. Literature related to each of the considered head types is quoted and discussed, with special attention paid to the works developed in the 21st century. In concluding remarks, the stress concentration and buckling of these structures are commented, with consideration of the head meridian shapes.


2015 ◽  
Vol 03 (04) ◽  
pp. 185-194 ◽  
Author(s):  
Yengula Venkata Narayana ◽  
Jagadish Babu Gunda ◽  
Ravinder Reddy Pinninti ◽  
Markandeya Ravvala

2011 ◽  
Vol 471-472 ◽  
pp. 833-838 ◽  
Author(s):  
Behzad Abdi ◽  
Hamid Mozafari ◽  
Ayob Amran

In this paper, the finite element analysis is used to investigate the effect of shape of dome ends on the buckling of pressure vessel heads under external pressure. The Finite Element Analysis (FEA) with the use of elastic buckling analysis was applied to predict the critical buckling pressure. The influence of geometrical parameters such as thickness, knuckle radius, and the ratio of minor axis to the major axis of dome ends, on the weight and the critical buckling pressure of hemispherical, ellipsoidal, and torispherical dome ends, was studied. The four-centered ellipse method was used to describe the geometry of the dome end.


Sign in / Sign up

Export Citation Format

Share Document