Cine phase-contrast MRI evaluation of normal aqueductal csf flow according to sex and age

Author(s):  
Ozkan Unal ◽  
Alp Kartum ◽  
Serhat Avcu ◽  
Omer Etlik ◽  
Halil Arslan ◽  
...  
2013 ◽  
Vol 118 (5) ◽  
pp. 1135-1140 ◽  
Author(s):  
Elizabeth C. Clarke ◽  
Marcus A. Stoodley ◽  
Lynne E. Bilston

Object The pathogenesis of syringomyelia in association with Chiari malformation Type I (CM-I) is unclear. Studies of patients with CM-I have shown alterations in the CSF velocity profile using cardiac-gated cine phase-contrast MRI, and computational simulations have demonstrated that temporal features of the CSF pulse could contribute to syrinx development or enlargement. Few studies have reported temporal characteristics of the CSF profile, and few studies have reported on CM-I patients with and without syringomyelia separately. This study was performed to determine whether specific temporal features of the CSF flow profile may underlie the development or enlargement of a syrinx in patients with CM-I. Methods Ten healthy volunteers and 18 patients with CM-I with (8 patients) and without (10 patients) syringomyelia were studied using cardiac-gated cine phase-contrast MRI, measuring the maximum CSF velocities in the cranial and caudal directions, the timing of these maximums relative to the cardiac cycle time, the timing of caudal flow onset, timing of cranial flow onset, and the duration of caudal flow. Results The caudal CSF flow was significantly faster (p ≤ 0.01) and earlier (p < 0.02) in patients without syringomyelia than in healthy volunteers and patients with syringomyelia. There were no significant differences in the CSF velocities between patients with syringomyelia and healthy volunteers. Patients with CM-I who had syringomyelia had a significantly later start of caudal CSF flow (p < 0.01) and earlier maximum cranial velocity (p = 0.03) than healthy volunteers, but the relative durations of caudal and cranial flow were not significantly different between any of the groups. Conclusions The significantly earlier arrival and earlier peak velocity of caudal CSF flow may underlie the development of syringomyelia in patients with CM-I, and after a syrinx develops the CSF flow profile appears to stabilize.


Author(s):  
E.I. Kremneva ◽  
B.M. Akhmetzyanov ◽  
L.A. Dobrynina ◽  
M.V. Krotenkova

Hemodynamic parameters of blood and cerebrospinal fluid (CSF) flow can be measured in vivo using phase-contrast MRI (PC-MRI). This opens new horizons for studying the mechanisms implicated in the development and progression of age-related cerebral small vessel disease (SVD). In this paper, we analyze associations between cerebral arterial, venous and CSF flow impairments and SVD features visible on MRI. The study was carried out in 96 patients with SVD (aged 60.91 ± 6.57 years) and 23 healthy volunteers (59.13 ± 6.56 years). The protocol of the MRI examination included routine MRI sequences (T2, FLAIR, T1, SWI, and DWI) applied to assess the severity of brain damage according to STRIVE advisory standards and PC-MRI used to quantify blood flow in the major arteries and veins of the neck, the straight and upper sagittal sinuses, and CSF flow at the aqueduct level. We analyzed the associations between linear and volumetric parameters of blood/CSF flow and the degree of brain matter damage using the Fazekas scale. We observed a reduction in tABF, stVBF, sssVBF, aqLF, Saq, and ICC values and a rise in Pi associated with WMH progression, as well as a gradual decline in tABF and an increase in Pi, Saq and ICC associated with a growing number of lacunes (р < 0.05). Patients with early (< 5) MB had lower sssVBF and stVBF rates in comparison with patients without MB; aqLF, Saq, and ICC values were elevated in patients with 5 to 10 MB, as compared to patients without MB or early (< 5) MB. The established associations between MRI findings in patients with SVD and blood/CSF flow impairments suggest the important role of mechanisms implicated in the disruption of Monro–Kellie intracranial homeostasis in promoting SVD.


2002 ◽  
Vol 15 (4) ◽  
pp. 418-428 ◽  
Author(s):  
Kristin L. Wedding ◽  
Mary T. Draney ◽  
Robert J. Herfkens ◽  
Christopher K. Zarins ◽  
Charles A. Taylor ◽  
...  

1994 ◽  
Vol 35 (2) ◽  
pp. 123-130 ◽  
Author(s):  
F. Barkhof ◽  
M. Kouwenhoven ◽  
P. Scheltens ◽  
M. Sprenger ◽  
P. Algra ◽  
...  

Cine phase-contrast MR imaging was used to study pulsatile CSF flow in the aqueduct in 11 young controls (mean age 30 years) and 9 old controls (mean age 69 years). A high-resolution gradient echo technique and an oblique imaging plane, perpendicular to the aqueduct, was used to avoid volume averaging. Phantom studies confirmed that the technique was accurate. Aqueductal velocity and flux in old controls was higher than in young controls, but the differences were not significant. For all controls together, the averaged peak velocity was 4.2 ± 1.5 cm/s in rostral and −7.8 ± 4.9 cm/s in caudal direction; for the flux it was 0.16 ± 0.10 cm3/s in rostral and −0.29 ± 0.19 cm3/s in caudal direction. Phase-contrast measurements were significantly related to flow-void on modulus MR images, but not with ventricular size or cortical atrophy. The present technique avoids underestimation of aqueductal flow, and therefore reveals higher aqueductal velocity and flux values than previous studies. Factors other than age or atrophy seem to determine aqueductal CSF flow.


Sign in / Sign up

Export Citation Format

Share Document