Kinetic and Electrical Energy Storage Device on Base of the Hybrid System «Superconductor-Superflywheel» (SC-SFW)

1999 ◽  
Author(s):  
Valery S. Sapelkin ◽  
Andrej A. Davydov ◽  
Nikolai S. Nikolaev
2020 ◽  
Vol 277 ◽  
pp. 115576 ◽  
Author(s):  
Andrea Culcasi ◽  
Luigi Gurreri ◽  
Andrea Zaffora ◽  
Alessandro Cosenza ◽  
Alessandro Tamburini ◽  
...  

2021 ◽  
Vol 267 ◽  
pp. 01039
Author(s):  
Daiyong Zhou ◽  
Yin Lin ◽  
Gaojian Ren ◽  
Yan Shao

Ventilation tunnel wind-induced vibration piezoelectric energy collection MFC as vibration energy in the ventilation tunnel and stores it in the energy storage device to provide the electrical energy required by the wireless sensor in the tunnel. According to the piezoelectric effect of piezoelectric materials, the instantaneous accumulated positive and negative charges generated at both ends of the piezoelectric vibrator at the instantaneous wind speed and wind vibration in the tunnel are collected. By establishing a piezoelectric energy collection model, the irregular transient charges are captured and stored as Available direct current. The piezoelectric energy harvesting model uses wind speed rotation as the traction force to drive the piezoelectric vibrator to vibrate, thereby converting wind energy into instantaneous electrical energy, and using the electrical energy harvesting device to store the electrical energy in the energy storage device. Experiments verify that when the wind-induced vibration piezoelectric energy collection model of the ventilation tunnel is at a wind speed of 8m/s, the maximum output voltage of the energy storage device is 42.2V, which can meet the power supply requirements of wireless sensors in the ventilation tunnel.


Sign in / Sign up

Export Citation Format

Share Document