Model Based Embedded System Development for In-Vehicle Network Systems

Author(s):  
Joonwoo Son ◽  
Ivan Wilson ◽  
Wootaik Lee ◽  
Suk Lee
2021 ◽  
Vol 10 (1) ◽  
pp. 20
Author(s):  
Walter Tiberti ◽  
Dajana Cassioli ◽  
Antinisca Di Marco ◽  
Luigi Pomante ◽  
Marco Santic

Advances in technology call for a parallel evolution in the software. New techniques are needed to support this dynamism, to track and guide its evolution process. This applies especially in the field of embedded systems, and certainly in Wireless Sensor Networks (WSNs), where hardware platforms and software environments change very quickly. Commonly, operating systems play a key role in the development process of any application. The most used operating system in WSNs is TinyOS, currently at its TinyOS 2.1.2 version. The evolution from TinyOS 1.x and TinyOS 2.x made the applications developed on TinyOS 1.x obsolete. In other words, these applications are not compatible out-of-the-box with TinyOS 2.x and require a porting action. In this paper, we discuss on the porting of embedded system (i.e., Wireless Sensor Networks) applications in response to operating systems’ evolution. In particular, using a model-based approach, we report the porting we did of Agilla, a Mobile-Agent Middleware (MAMW) for WSNs, on TinyOS 2.x, which we refer to as Agilla 2. We also provide a comparative analysis about the characteristics of Agilla 2 versus Agilla. The proposed Agilla 2 is compatible with TinyOS 2.x, has full capabilities and provides new features, as shown by the maintainability and performance measurement presented in this paper. An additional valuable result is the architectural modeling of Agilla and Agilla 2, missing before, which extends its documentation and improves its maintainability.


2021 ◽  
Author(s):  
Jonathan B. Chan

System on Programmable Chip (SoPC) based embedded system development has been increasing, aiming for improved system design, testing, and cost savings in the workflow for Application Specific ICs (ASIC). We examine the development of Smart Home embedded systems, which have been traditionally based on a fixed processor and memory, with inflexible configuration. We investigate how more ability can be added by updating firmware without the burden of updating hardware, or using a full (but dedicated) general purpose computer system. Our development and implementation of the smart home controller is based on the SoPC development environment from Altera. The development board includes all the necessary parts such as processor, memory, and various communication interfaces. The initial implementation includes a simple protocol for communication between home appliances or devices and controller. This protocol allows data transfer between home appliances or devices and the controller, in turn allowing both to support more features. We have investigated and developed a home resource management application. The main resources being managed in this project are hot and cold water, electricity, and gas. We have introduced a number of expert rules to manage these resources. Additionally, we have developed a home simulator, with virtual appliances and devices, that communicates with the home controller. The simulator interacts with the SoPC based smart home embedded system developed in this project by generating messages representing a number of smart appliances in the home. It provides a useful testing environment for the smart home embedded system to verify its design goals.


Author(s):  
Kerstin Schmidt ◽  
Grit Walther ◽  
Thomas S. Spengler ◽  
Rolf Ernst

Author(s):  
Justyna Zander ◽  
Ina Schieferdecker

The purpose of this chapter is to introduce the test methods applied for embedded systems addressing selected problems in the automotive domain. Model-based test approaches are reviewed and categorized. Weak points are identified and a novel test method is proposed. It is called model-in-the-loop for embedded system test (MiLEST) and is realized in MATLAB®/Simulink®/Stateflow® environment. Its main contribution refers to functional black-box testing based on the system and test models. It is contrasted with the test methods currently applied in the industry that form dedicated solutions, usually specialized in a concrete testing context. The developed signal-feature-oriented paradigm developed herewith allows the abstract description of signals and their properties. It addresses the problem of missing reference signal flows and allows for a systematic and automatic test data selection. Processing of both discrete and continuous signals is possible, so that the hybrid behavior of embedded systems can be handled.


Sign in / Sign up

Export Citation Format

Share Document