A 3D-Simulation with Detailed Chemical Kinetics of Combustion and Quenching in an HCCI Engine

Author(s):  
Chengke Liu ◽  
Ghazi A. Karim
Author(s):  
Omid Jahanian ◽  
Seyed Ali Jazayeri

In this paper, the performance of a natural gas HCCI engine is studied through a thermodynamic model including detailed chemical kinetics. Then the influence of using formaldehyde as an additive on the engine characteristics has been investigated. Results show that it is possible to change engine working limits using this additive. Furthermore, there is an optimum additive content for each operating condition which leads to higher output work and power. It is also shown that the air/fuel mixture will ignite earlier using this additive so it is conceivable to reduce inlet mixture temperature resulting in better performance due to higher volumetric efficiency.


2010 ◽  
Author(s):  
Karthik V. Puduppakkam ◽  
Long Liang ◽  
Anthony Shelburn ◽  
Chitralkumar V. Naik ◽  
Ellen Meeks ◽  
...  

Author(s):  
Wing Tsang

Modern Computational Fluid Dynamics codes have increasing capabilities for taking into account detailed chemical kinetics [1, 2]. This opens the possibility of simulating the combustion of real fuels in industrial devices. This will bring combustion technology in line with modern developments in cutting edge science. One could not design VLSI circuits without simulations. Similarly, the design of modern airplanes depends on simulations before final wind tunnel testing. A key to the proper simulation of the chemistry in combustion is the kinetics database. The aim of this paper is to describe the current situation in this area. We will begin by discussing the special problems posed by the nature of the fuel. We will then define the elements in a proper chemical kinetic database. Currently used databases for the simulation of combustion will be critically examined. The importance of a more fundamentally based database will be emphasized. Finally some recent work pertaining to the chemical kinetics of real liquid fuel molecules will be described.


Author(s):  
Chengke Liu ◽  
Ghazi A. Karim

A CFD multi-dimensional computational approach has been developed through a combination of a modified KIVA3 code together with a detailed chemical kinetics scheme for the oxidation of n-heptane in air while considering the effects of turbulence. The effects of adding different quantities of hydrogen, methane and carbon monoxide to the heptane on the combustion characteristics of the HCCI engine under different conditions were investigated both experimentally and numerically. The effects of changes in the combustion chamber wall surface temperature on the combustion characteristics of the HCCI engine were examined. It was found that the presence with n-heptane of some hydrogen, methane or carbon monoxide could delay to various extents the autoignition, while changes in the values of the combustion chamber wall temperature influence the autoignition timing and its initial location. It is suggested that the supplementing of the liquid fuel with gaseous fuels and/or application of a suitable glow-plug surface of optimum size and location fitted with temperature control may aid in controlling the combustion process of an HCCI engine while obtaining higher power output without producing knock.


2013 ◽  
Vol 390 ◽  
pp. 320-326 ◽  
Author(s):  
Chen Cheng ◽  
Fu Ting Bao ◽  
Yu Zhao ◽  
Hao Xu

A model for Premixed Ammonium Perchlorate (AP)/Hydroxyl-terminated Polybutadiene (HTPB) combustion based on detailed chemical kinetics was established on two-dimensional cylindrical coordinates using the Vorticity-Velocity formulation, finite difference methods and several essential mathematical algorithms. This model includes both solid and condensed phase combustion mechanisms and the detailed chemical kinetics of the gas phase with 37 species and 127 reactions. Results obtained from the model, such as temperature and burning rate, match data from experiments. It is found that the model established in the current study is reliable and accurate, and the Vorticity-Velocity approach combined with finite difference methods is capable of and efficient in dealing with premixed AP/HTPB combustion.


Author(s):  
Marco Antonio Nascimento ◽  
Lucilene Oliveria Rodrigues ◽  
Fagner Luis Goulart Dias

Author(s):  
A. I. Lopato ◽  
◽  
A. G. Eremenko ◽  

Recently, we developed a numerical approach for the simulation of detonation waves on fully unstructured grids and applied it to the numerical study of the mechanisms of detonation initiation in multifocusing systems. Current work is devoted to further development of our numerical approach, namely, parallelization of the numerical scheme and introduction of more comprehensive detailed chemical kinetics scheme.


Sign in / Sign up

Export Citation Format

Share Document