Investigation of the Combustion Characteristics with Focus on Partially Premixed Combustion in a Heavy Duty Engine

2008 ◽  
Vol 1 (1) ◽  
pp. 1063-1074 ◽  
Author(s):  
Magnus Lewander ◽  
Kent Ekholm ◽  
Bengt Johansson ◽  
Per Tunestal ◽  
Nebojsa Milovanovic ◽  
...  
2009 ◽  
Vol 2 (2) ◽  
pp. 71-88 ◽  
Author(s):  
Vittorio Manente ◽  
Bengt Johansson ◽  
Per Tunestal ◽  
William Cannella

Author(s):  
Kenan Muric ◽  
Per Tunestal ◽  
Ingemar Magnusson

European and US emission legislation on diesel compression ignition engines has pushed for the development of new types of combustion concepts to reduce hazardous pollutants and increase fuel efficiency. Partially premixed combustion (PPC) has been proposed as one solution to future restrictions on emissions while providing high gross indicated efficiency. The conceptual idea is that the time for the mixing between fuel and air will be longer when ignition delay is increased by addition of high amounts of exhaust gas recirculation (EGR). Increased air-fuel mixing time will lead to lower soot emissions and the high EGR rates will reduce both NOx emissions and combustion flame temperature, which decreases the overall heat transfer. Previous research in heavy-duty gasoline PPC has mostly focused on emissions and efficiency at low and medium load in single-cylinder engines. In this paper a Volvo D13 heavy-duty single-stage VGT engine with a newly developed Wave piston was run at medium and high engine load with a variation in fuel injection pressure. The Wave piston was specifically designed to enhance air-fuel mixing and increase combustion velocity. Two fuels were used in the experiments, PRF70 and Swedish MK1 diesel. Soot-NOx trade-off, combustion characteristics and efficiency were compared for both fuels at 1000 and 2000 Nm engine torque. The results show that at high load the combustion behavior with respect to rate of heat release and heat transfer is very similar between the fuels and no major difference in indicated efficiency could be observed. Peak gross indicated efficiencies were reported to be around 49 % for both fuels at 1000 Nm and slightly above 50 % at 2000 Nm. The new Wave piston made it possible to obtain 1 g/kWh engine-out NOx emissions while still complying with Euro VI legislation for particulate emissions. Soot emissions were generally lower for PRF70 compared to MK1 diesel. We could also conclude that gas exchange performance is a major issue when running high load PPC where high Λ and EGR is required. The single-stage VGT turbocharger could not provide sufficient boost to keep Λ above 1.3 at high EGR rates. This penalized combustion efficiency and soot emissions when reaching Euro VI NOx emission levels (0.3–0.5 g/kWh).


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Omid Askari ◽  
Hameed Metghalchi ◽  
Siamak Kazemzadeh Hannani ◽  
Ali Moghaddas ◽  
Reza Ebrahimi ◽  
...  

This study presents fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber (CVCC). The constant volume vessel is a cylinder with inside diameter of 135 mm and inside height of 135 mm. Two end of the vessel are equipped with optical windows. A high speed complementary metal oxide semiconductor (CMOS) camera capable of capturing pictures up to 40,000 frames per second is used to observe flow conditions inside the chamber. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel–air mixture in the vessel, similar to that in a compressed natural gas (CNG) direct-injection (DI) engine. The fuel–air mixture is ignited by centrally located electrodes at a given spark delay timing of 1, 40, 75, and 110 ms. In addition to the four delay times, a 5 min waiting period was used in order to make sure of having laminar homogeneous combustion. Spray development and characterization including spray tip penetration (STP), spray cone angle (SCA), and overall equivalence ratio were investigated under 30–90 bar fuel pressures and 1–5 bar chamber pressure. Flame propagation images and combustion characteristics were determined via pressure-derived parameters and analyzed at a fuel pressure of 90 bar and a chamber pressure of 1 bar at different stratification ratios (S.R.) (from 0% to 100%) at overall equivalence ratios of 0.6, 0.8, and 1.0. Shorter combustion duration and higher combustion pressure were observed in direct injection-type combustion at all fuel air equivalence ratios compared to those of homogeneous combustion.


Author(s):  
Hadeel Solaka ◽  
Martin Tunér ◽  
Bengt Johansson

The impact of fuel composition on the emission performance and combustion characteristics for partially premixed combustion (PPC) were examined for four fuels in the gasoline boiling range together with Swedish diesel MK1. Experiments were carried out at 8 bar IMEPg and 1500 rpm with 53±1% EGR and λ = 1.5. This relation gave inlet mole fractions of approximately 5% CO2 and 13% O2. The combustion phasing was adjusted by means of start of injection (SOI), for all fuels, over the range with stable combustion and acceptable pressure rise rate combined with maintained λ, EGR ratio, inlet pressure, and load. The operating range was limited by combustion instability for the high RON fuels, while MK1 and the low RON fuels could be operated over the whole MBT plateau. The largest difference in engine-out emissions between the fuels was the filtered smoke number (FSN), as the gasoline fuels produced a much lower FSN value than MK1. Higher RON value gave higher levels of carbon monoxide (CO) and unburned hydrocarbon (HC) for the gasoline fuels, while MK1 had the lowest levels of these emissions.


2009 ◽  
Author(s):  
Magnus Lewander ◽  
Bengt Johansson ◽  
Per Tunestål ◽  
Nathan Keeler ◽  
Simon Tullis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document