Investigation of Partially Premixed Combustion Characteristics in Low Load Range with Regards to Fuel Octane Number in a Light-Duty Diesel Engine

Author(s):  
Hadeel Solaka ◽  
Ulf Aronsson ◽  
Martin Tuner ◽  
Bengt Johansson
Energy ◽  
2016 ◽  
Vol 96 ◽  
pp. 155-165 ◽  
Author(s):  
Liang Qiu ◽  
Xiaobei Cheng ◽  
Bei Liu ◽  
Shijun Dong ◽  
Zufeng Bao

Author(s):  
Hadeel Solaka ◽  
Martin Tunér ◽  
Bengt Johansson

The impact of fuel composition on the emission performance and combustion characteristics for partially premixed combustion (PPC) were examined for four fuels in the gasoline boiling range together with Swedish diesel MK1. Experiments were carried out at 8 bar IMEPg and 1500 rpm with 53±1% EGR and λ = 1.5. This relation gave inlet mole fractions of approximately 5% CO2 and 13% O2. The combustion phasing was adjusted by means of start of injection (SOI), for all fuels, over the range with stable combustion and acceptable pressure rise rate combined with maintained λ, EGR ratio, inlet pressure, and load. The operating range was limited by combustion instability for the high RON fuels, while MK1 and the low RON fuels could be operated over the whole MBT plateau. The largest difference in engine-out emissions between the fuels was the filtered smoke number (FSN), as the gasoline fuels produced a much lower FSN value than MK1. Higher RON value gave higher levels of carbon monoxide (CO) and unburned hydrocarbon (HC) for the gasoline fuels, while MK1 had the lowest levels of these emissions.


2009 ◽  
Vol 2 (1) ◽  
pp. 1265-1289 ◽  
Author(s):  
Isaac W. Ekoto ◽  
Will F. Colban ◽  
Paul C. Miles ◽  
Sungwook Park ◽  
David E. Foster ◽  
...  

Author(s):  
Vittorio Manente ◽  
Bengt Johansson ◽  
Pert Tunestal

EGR sweeps were performed on Ethanol Partially Premixed Combustion, PPC, to show different emission and efficiency trends as compared to Diesel PPC. The sweeps showed that increasing the EGR rate the efficiency does not diminish, HC trace is flat and CO is low even with 45% of EGR. NOx exponentially decreases by increasing EGR while soot levels are nearly zero throughout the sweep. The EGR sweeps underlined that at high EGR levels, the pressure rise rate is a concern. To overcome this problem and keep high efficiency and low emissions a sweep in timing of the pilot injection and pilot-main ratio was done at ∼16.5 bar gross IMEP. It was found that with a pilot-main ratio of 50–50 and by placing the pilot at −60 with 42% of EGR, NOx and soot are below EURO VI levels, the indicated efficiency is 47% and the maximum pressure rise rate is below 10 bar/CAD. Low load conditions were examined as well. It was found that by placing the SOI at −35 TDC the efficiency is maximized on the other hand when the injection is at −25 the emissions are minimized and the efficiency is only 1.64% lower than its optimum value. The idle test also showed that a certain amount of EGR is needed in order to minimize the pressure rise rate.


Sign in / Sign up

Export Citation Format

Share Document