Optimization of Timing Drive System Design Parameters for Reduced Engine Friction

Author(s):  
Umut Uysal ◽  
Ozgen Akalin
Author(s):  
Duanling Li ◽  
Kaijie Dong ◽  
Xingze Wang ◽  
Biao Li ◽  
Zhou Su

Abstract Synchronous joints are an important part of the SAR antenna deployment mechanism. They are the key to the synchronized deployment of antenna. By means of mechanism combination and deformation, a new type of synchronous joint with a precise cable drive system is designed in order to meet the requirements of SAR antenna deployment mechanism. This study mainly focuses on the design of the synchronous joint, including the system design and the precise cable drive system design. By applying a preload to the drive cable, the transmission gap is reduced, and the accuracy and efficiency of transmission are improved. This paper focuses on the theoretical calculation and analysis of the preload and system stiffness of the precise cable drive system. Based on the Euler equation of the flexible friction drive, the stiffness formula of the cable drive system is derived. In addition, the main design parameters affecting the stiffness of the cable drive system are analyzed parametrically. The comparison between the results obtained from the system stiffness experiment and the theoretical calculation result indicates that the experimental values are slightly smaller than the theoretical values, and the trend of change is basically consistent. This experiment therefore verifies the validity of the stiffness calculation formula and theoretical analysis.


2008 ◽  
Vol 54 (1) ◽  
pp. 47-57
Author(s):  
Francis E. Greulich

Abstract Airtankers, while actively engaging in initial attack, are sometimes reassigned and flown directly to another randomly occurring initial attack fire. Airtanker system planning that means to incorporate this fire-to-fire transfer activity needs information about the flight distance between these randomly located fires. Moments of the distance distribution, derived in this article, can be used to characterize and evaluate fire-to-fire airtanker dispatch within and between protection areas. A hypothetical example illustrates how a proposed change in an airtanker protection zone can affect not only airbase-to-fire flight distance but also fire-to-fire flight distance. In this example, the expected airbase-to-fire distance and the expected total transfer-flight distance are both significantly reduced, but at the same time, somewhat unexpectedly, the average fire-to-fire flight distance actually increases. The discovery and quantification of such unanticipated results can potentially influence airtanker system design. These key system design parameters can now be obtained through the exceedingly fast and accurate analytical methods presented here.


2008 ◽  
Vol 1102 ◽  
Author(s):  
Terry J Hendricks ◽  
Naveen K. Karri

AbstractAdvanced, direct thermal energy conversion technologies are receiving increased research attention in order to recover waste thermal energy in advanced vehicles and industrial processes. Advanced thermoelectric (TE) systems necessarily require integrated system-level analyses to establish accurate optimum system designs. Past system-level design and analysis has relied on well-defined deterministic input parameters even though many critically important environmental and system design parameters in the above mentioned applications are often randomly variable, sometimes according to complex relationships, rather than discrete, well-known deterministic variables. This work describes new research and development creating techniques and capabilities for probabilistic design and analysis of advanced TE power generation systems to quantify the effects of randomly uncertain design inputs in determining more robust optimum TE system designs and expected outputs. Selected case studies involving stochastic TE .material properties demonstrate key stochastic material impacts on power, optimum TE area, specific power, and power flux in the TE design optimization process. Magnitudes and directions of these design modifications are quantified for selected TE system design analysis cases.


2015 ◽  
Vol 96-97 ◽  
pp. 547-552 ◽  
Author(s):  
Toshimichi Omori ◽  
Ferran Albajar ◽  
Tullio Bonicelli ◽  
Giuseppe Carannante ◽  
Mario Cavinato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document