scholarly journals Effects of Post-Injection Strategies on Near-Injector Over-Lean Mixtures and Unburned Hydrocarbon Emission in a Heavy-Duty Optical Diesel Engine

2011 ◽  
Vol 4 (1) ◽  
pp. 1978-1992 ◽  
Author(s):  
Clément Chartier ◽  
Oivind Andersson ◽  
Bengt Johansson ◽  
Mark Musculus ◽  
Mohan Bobba
2020 ◽  
pp. 146808742098091
Author(s):  
Sheikh Muhammad Farhan ◽  
Wang Pan ◽  
Wu Yan ◽  
Yi Jing ◽  
Lei Lili

An experimental study was carried out to analyze the influence of different post-injection strategies on the regulated and unregulated emissions from a heavy-duty compression ignition (CI) diesel engine. FTIR (Fourier transform infrared spectroscopy) was used to measure and analyze the exhaust emissions which include regulated such as NOx, soot, and unregulated emissions including acetaldehyde, formaldehyde, methane, ethane, propane, ethylene, propylene, and ethyne. Experimental results manifested that the post-injection technique can notably minimize the regulated and unregulated emissions as compared to a single main injection. Under different post-injection conditions, a trade-off relation was also found between soot and NOx emissions. In soot mitigation, the start of injection (SOI) at 40° crank angle (CA) incorporate with 5–15 mg post-injection fuel mass was proved very effective and about 26% lower soot emissions were recorded than single main injection. At SOI 20°CA, with 15 mg post-injection fuel mass, a reduction in the NOx emissions was observed up to 20% and in THC up to 60%. Unregulated emissions (other than formaldehyde and acetaldehyde) were found lower with 5, 10, and 15 mg post-injection fuel mass at 20, 40, 100, and 120°CA but increased at SOI of 60°CA than single main injection. In addition, light HCs, and THC emissions at SOI 60°CA were found to increase which could be beneficial for after-treatment devices.


2020 ◽  
Vol 12 (12) ◽  
pp. 168781402098462
Author(s):  
Yingying Lu ◽  
Yize Liu

Advanced multiple injection strategies have been suggested for compression ignition engines in order to meet the increasingly stringent emission regulations. Experiments and simulations were used to study effects of the main-injection mode (times), the post-injection proportion, and timing on combustion and emissions in a heavy-duty diesel engine at high load and constant low speed. The results reveal the following. The NOx emissions of 1main+1post, 2main+1post, and 3main+1post injections are all lower than those of single injection; the higher the number of main-injection pluses, the lower the NOx emissions. Enough main-post injection interval is needed to ensure post and main injections are relatively independent to entrain more fresh air to decrease the soot. Over-retarded post-injection timing tends to increase the soot due to the lower in-cylinder temperature. The combined effects of formation and oxidation determine the final soot. To gain the best trade-off of NOx and soot, compared with single injection, for the three multiple injections, the lowest soot emissions are gained at post-injection proportions of 15% and post-injection timings of 25°, 30°, and 35° CA ATDC, with soot reductions of 26.7%, −34.5%, and −112.8%, and NOx reductions of 5.88%, 21.2%, and 40.3%, respectively, for 1main+1post, 2main+1post, and 3main+1post injections.


Fuel ◽  
2020 ◽  
Vol 267 ◽  
pp. 117256 ◽  
Author(s):  
Sheikh Muhammad Farhan ◽  
Wang Pan ◽  
Wu Yan ◽  
Yi Jing ◽  
Lei Lili

2017 ◽  
Vol 123 ◽  
pp. 365-376 ◽  
Author(s):  
Jesús Benajes ◽  
Jaime Martín ◽  
Antonio García ◽  
David Villalta ◽  
Alok Warey

Sign in / Sign up

Export Citation Format

Share Document