swirl ratio
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 29)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Long Liu ◽  
Tianyang Dai ◽  
Qian Xiong ◽  
Yuehua Qian ◽  
Bo Liu

Abstract With increasingly stringent emissions limitation of greenhouse gas and atmospheric pollutants for ship, the direct injection of natural gas on the cylinder head with high-pressure injection is an effective method to make a high power output and decrease harmful gas emissions in marine natural gas dual fuel engines. However, the effects on mixing characteristics of high-pressure natural gas underexpanded jet have not been fully understood. Especially, the injection pressure is up to 30 MPa with large injection quantity and critical surrounding gas conditions for the low-speed two-stroke marine engine. Therefore, this research is focused on the flow and mixing process of the natural gas jet with high-pressure injection under the in-cylinder conditions of low-speed two-stroke marine engine. The gas jet penetration, the distribution of velocity and density, the equivalence ratio and air entrainment have been analyzed under different nozzle hole diameters by numerical simulation. The effects of surrounding gas conditions including pressure, temperature and swirl ratio on air entrainment and equivalence ratio distribution were studied in detail. From the numerical simulation, it is found that the mixing characteristics of natural gas jet can be improved under in-cylinder conditions of higher ambient temperature and swirl ratio, which is relevant to the low-speed two-stroke marine engine.


Author(s):  
Kacper Pałkus ◽  
Piotr Strzelczyk

The dimensional analysis and the numerical parametric study of the typical outer air seal from a low-pressure turbine were performed in the framework of the presented paper. The most crucial variables for the flow through the outer air seal were identified and further dimensionless numbers were derived. The dependent quantities resulting from the analysis were: the axial Reynolds number (formulated with the bulk velocity, corresponding to the mass flow through the seal), the outlet swirl ratio (incorporating the exit flow angle, important for mixing) and the windage heating (related to the internal losses). Additionally, the discharge coefficient was cross-checked enabling further comparison with the available literature. The comprehensive numerical parametric study included all important contributors for the flow through the seal with a parameter operating range appropriate for engine outer air seals.


2021 ◽  
Vol 53 (3) ◽  
pp. 210306
Author(s):  
Willyanto Anggono ◽  
Mitsuhisa Ichiyanagi ◽  
Reina Saito ◽  
Gabriel J. Gotama ◽  
Chris Cornelius ◽  
...  

Intake airflow characteristics are essential for the performance of diesel engines. However, previous investigations of these airflow characteristics were mostly performed on two-valve engines despite the difference between the airflow of two-valve and four-valve engines. Therefore, in this study, particle image velocimetry (PIV) investigations were performed on a four-valve diesel engine. The investigations were conducted under different engine speeds and helical port openings using a swirl control valve (SCV). The results suggest that the position of the swirl center does not significantly shift with different engine speeds and helical port openings, as the dynamics of the flow remained closely similar. The trends of the airflow characteristics can be best observed during the compression stroke. A higher engine speed increases the angular velocity of the engine more compared to the increase of the airflow velocity and results in a lower swirl ratio of the flow. On the other hand, a higher engine speed leads to a higher mean velocity and the variation of velocity results in a larger turbulence intensity of the flow. Increasing the helical port opening brings a reduction in the swirl ratio and turbulence intensity as more airflow from the helical port disturbs the airflow from the tangential port.


2021 ◽  
Author(s):  
Dara W. Childs ◽  
Joshua Bullock

Abstract Static test results are presented for smooth annular seals with a length-to-diameter ratio of 0.50, radius R = 51.00 mm, at the nominal radial clearance Cr = 0.2032 mm. Tests were conducted for angular shaft speeds; ω = 2, 4, 6, 8 krpm, axial pressure drops; ΔP = 2.1, 4.13, 6.21, 8.27 bars, and eccentricity ratios ϵ0 = e0/Cr = 0.00, 0.27, 0.53, 0.8 where e0 is the static eccentricity. Three pre-swirl inserts were used to target zero, medium, and high (0., 0.4, and 0.8) pre-swirl ratios for a set of pre-determined operating conditions with ISO VG 2 oil at 46.1°C. Pitot tubes measured the circumferential velocity at separate upstream and downstream seal locations and were used to calculate pre-swirl ratio, PSR = vinlet/Rω, and outlet-swirl ratio, OSR = voutlet/Rω. For all tested pre-swirl inserts, PSR tended to converge to 0.4∼0.5 as ω increased. PSR and OSR were poorly correlated. Volumetric leakage rate Q ˙ versus pressure differential ΔP was measured. The measured vector Reynolds number Re, combining the axial and circumferential Reynolds numbers ranged from ∼1000 to ∼3500. Based on Zirkelback and San Andrés 1996 publication, almost all of the flow regime is predicted to lie in the transition regime, with fewer points in the turbulent regime. Generally, the seals’ static centering properties were obtained by applying a static load Fs and measuring the resulting displacement vector e0. At many low-speed, low-ΔP test conditions, the seal would not remain in the desired centered or near-centered position and had to be forced into place with a centering force Fs. The authors believe that the observed de-centering effects resulted from test operations in the transition flow regime where the friction factor λ does not drop with increasing ΔP and increasing Re. A positive centering Lomakin effect requires that λ drop with increasing axial Reynolds number. The seals had positive centering effects over a large portion of the predicted transition flow regime, supporting the view that the shift from transition-to-turbulent flow regularly occurred at lower Re values than the Re = 3000 boundary used by Zirkleback and San Andrés.


2021 ◽  
Author(s):  
Jing Yang ◽  
Luis San Andrés

Abstract A fluid with a large swirl (circumferential) velocity entering an annular pressure seal influences the seal cross-coupled dynamic stiffness coefficients and hence it affects system stability. Typically comprising a large number of angled vanes around the seal circumference, a swirl brake (SB) is a mechanical element installed to reduce (even reverse) the swirl velocity entering an annular seal. SB design guidelines are not readily available and existing configurations appear to reproduce a single source. By using a computational fluid dynamics (CFD) model, the paper details a process to engineer a SB upstream of a sixteen-tooth labyrinth seal (LS) with tip clearance Cr = 0.203 mm. The process begins with a known nominal SB* geometry and considers variations in vane length (LV* = 3.25 mm) and width (WV* = 1.02 mm), and stagger angle (θ* = 0°). The vane number NV* = 72 and vane height HV* = 2.01 mm remain unchanged. The SB-LS operates with air supplied at pressure PS = 70 bar, a pressure ratio PR = exit pressure Pa / PS = 0.5, and rotor speed Ω = 10.2 krpm (surface speed ΩR = 61 m/s). Just before the SB the pre-swirl velocity ratio = average circumferential velocity U / shaft surface speed (ΩR) equals α = 0.5. For the given conditions, an increase in LV allows more space for the development of vortexes between two adjacent vanes. These are significant to the dissipation of fluid kinetic energy and thus control the reduction of α. A 42% increase in vane length (LV = 4.6 mm) produces a ∼ 43% drop in swirl ratio at the entrance of the LS (exit of the SB), from αE = 0.23 to 0.13. Based on the SB with LV = 4.6 mm, the stagger angle θ varies from 0° to 50°. The growth in angle amplifies a vortex at ∼ 70% of the vane height while it weakens a vortex at 30% of HV. For θ = 40°, the influence of the two vortexes on the flow produces the smallest swirl ratio at the LS entrance, αE = −0.03. For a SB with LV = 4.6 mm and θ = 40°, the vane width WV varies from 0.51 mm to 1.52 mm (± 50% of WV*). A reduction in WV provides more space for the strengthening of the vortex between adjacent vanes. Therefore, a SB with greater spacing of vanes also reduces the inlet circumferential velocity. For WV = 0.51 mm, αE further decreases to −0.07. Besides the design condition (α = 0.5), the engineered SB having LV = 4.6 mm, θ = 40° and WV = 0.51 mm effectively reduces the circumferential velocity at the LS entrance for other inlet pre-swirl ratios equaling α = 0 and 1.3. Rather than relying on extensive experiments, the CFD analysis proves effective to quickly engineer a best SB configuration from the quantification of performance while varying the SB geometry and inlet swirl condition.


2021 ◽  
Author(s):  
Ashutosh Jena ◽  
Harsimran Singh ◽  
Avinash Kumar Agarwal
Keyword(s):  
Air Flow ◽  

2021 ◽  
Author(s):  
Fengnian Zhao ◽  
Mengqi Liu ◽  
Weihan Fan ◽  
Jiajin Wu ◽  
Junxiang Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document