A Systematic Approach of Cooling System Design, Development and Application for Commercial Vehicles

Author(s):  
Kiran N ◽  
B Balaji
Author(s):  
Yinhan Gao ◽  
Wenzhi Wu ◽  
Jie Liang ◽  
Litong Zhang ◽  
Kun Qian ◽  
...  

2020 ◽  
Vol 67 (1) ◽  
pp. 42-47
Author(s):  
Anatoliy I. Sopov ◽  
Aleksandr V. Vinogradov

In power transformers, energy losses in the form of heat are about 2 percent of their rated power, and in transformers of large power centers reach hundreds of kilowatts. Heat is dissipated into the environment and heats the street air. Therefore, there is a need to consume this thermal energy as a source of heat supply to nearby facilities. (Research purpose) To develop methods and means of using excess heat of power transformers with improvement of their cooling system design. (Materials and methods) The authors applied following methods: analysis, synthesis, comparison, monographic, mathematical and others. They analyzed various methods for consuming excess heat from power transformers. They identified suitable heat supply sources among power transformers and potential heat consumers. The authors studied the reasons for the formation of excess heat in power transformers and found ways to conserve this heat to increase the efficiency of its selection. (Results and discussion) The authors developed an improved power transformer cooling system design to combine the functions of voltage transformation and electric heating. They conducted experiments to verify the effectiveness of decisions made. A feasibility study was carried out on the implementation of the developed system using the example of the TMG-1000/10/0.4 power transformer. (Conclusions) The authors got a new way to use the excess heat of power transformers to heat the AIC facilities. It was determined that the improved design of the power transformer and its cooling system using the developed solutions made it possible to maximize the amount of heat taken off without quality loss of voltage transformation.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yewon Song ◽  
Seulah Lee ◽  
Yuna Choi ◽  
Sora Han ◽  
Hyuna Won ◽  
...  

AbstractThe wearable electronics integrated with textile-based devices is a promising strategy to meet the requirements of human comfort as well as electrical performances. This research presents a design and development framework for a seamless glove sensor system using digital knitting fabrication. Based on the performance requirements of glove sensors for controlling a prosthetic hand, desirable design components include electrical conductivity, comfort, formfit, electrical sensitivity, and customizable design. These attributes are determined and achieved by applying appropriate materials and fabrication technologies. In this study, a digital knitting CAD/CAM system is utilized to meet the desired performance criteria, and two prototypes of the seamless glove sensor systems are successfully developed for the detection of both human and robotic finger motions. This digital knitting system will provide considerable potential for customized design development as well as a sustainable production process. This structured, systematic approach could be adapted in the future development of wearable electronic textile systems.


1991 ◽  
Vol 12 (2) ◽  
pp. 209-231 ◽  
Author(s):  
Henry Simpson ◽  
H. Lauren Pugh ◽  
Stephen W. Parchman

2021 ◽  
Author(s):  
Vincent Luong

For years, DSP has been the dominant tool in implementing gate switching for power inverter. It is a powerful and reliable technology in carrying out complex switching schemes. DSP is still expensive due to its intensive use of resource in chip fabrication. There is no flexibility in making change on hardware once a DSP chip is selected. It is also time consuming in a design development because the learning curve of the DSP is stiff. Recently, a new approach to the problem has emerged. It is called embedded system design. Basically, it is a FPGA system combined with a RISC type microprocessor. This is a robust combination that allows users to pick and choose any functional peripheral devices only as needed. Once the complete hardware platform is decided upon, the circuit is configured and down loaded to a chip. Software codes are then written to run the application. The hardware system is reconfigurable. Designers can always go back to change the hardware with ease in order to improve the performance and to meet the target cost. This is an attempt to utilize the embedded system design also called System on Programmable Chip (SOPC) to perform Space Vector Modulation (SVM) gate switching strategy. The Altera Nios II IDE tool is selected for this task.


Sign in / Sign up

Export Citation Format

Share Document