An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

Author(s):  
Robin Y. Cash ◽  
Edward Lumsdaine ◽  
Apoorv Talekar ◽  
Bashar AbdulNour
Author(s):  
Jeongyong Choi ◽  
Sridev Satpathy ◽  
John Hoard ◽  
Daniel Styles ◽  
Chih-Kuang Kuan

In recent years, many engine manufacturers have turned to downsizing and boosting of gasoline engines in order to meet the ever more stringent fuel economy and emissions regulations. With an increase in the number of turbocharged gasoline engines, solutions are required to manage knock under a range of operating conditions. The charge air cooler has been introduced to mitigate knock. Moreover, the engine is required to operate with spark retard and/or boost reduction to provide knock reduction leading to reduced fuel economy. Under some operating conditions water can condense in the charge air cooler (CAC). Corrugated plate separators have been widely used in gas-water separation and oil-water separation in many industries including marine diesel engines. However, this sort of separator has not been applied to gasoline engines in vehicles to separate the condensation in the charged air. In this paper, a 1-D condensation model to estimate the potential amount of water condensation and entrainment from the charge air coolers is presented. An approach to designing a unit to separate condensation in the flow from the charge air cooler while maintaining a low pressure drop is described. The design approach provides correlations of separator geometries versus separation and pressure drop performance. The study is developed using a 3-D computational model for analyzing charge air and condensation flow. The model results of the 1-D condensation model and the 3-D computational model have been validated by experiments on an engine-dynamometer based test cell. The set-up incorporates a 4 cylinder gasoline direct injection (GDI) turbocharged engine. An air-to-air charge air cooler is mounted under the engine. The intake air for the engine is supplied using a combustion air unit which enables the operators to control the temperature and humidity. Test conditions have been identified to demonstrate the phenomenon of CAC water condensation. Measurements of water condensation and motion through the system confirm the results of models. A separator has been designed that achieves high separation efficiency and low pressure drop.


2017 ◽  
Vol 11 (6) ◽  
pp. 414
Author(s):  
S. P. Gadewar ◽  
S. H. Gawande ◽  
S. A. Barhate

2018 ◽  
Vol 49 (17) ◽  
pp. 1705-1720 ◽  
Author(s):  
Qing Zhang ◽  
Xuesheng Wang ◽  
Weicheng Ruan ◽  
Qinzhu Chen ◽  
Zilong Liu

2015 ◽  
Vol 22 (2) ◽  
pp. 147-175 ◽  
Author(s):  
Lei Luo ◽  
Chenglong Wang ◽  
Lei Wang ◽  
Bengt Sunden ◽  
Songtao Wang

Author(s):  
Shashank Shekhar Mishra ◽  
Chandra Shekhar Sharma ◽  
Hemendra Pratap Singh ◽  
Harshda Pandiya ◽  
Neeraj Kumar

Tuberculosis, one of the most frequent infectious diseases, is caused by a mycobacterium tuberculosis bacteria and it infects several hundred million people each year, results in several million deaths annually. Because there is development of antibiotic resistance, the disease becomes incurable. So, in the absence of effective and potent drug with minimal resistance problems, the mortality rate increases annually. In this computational investigation, we performed In-silico ADME, bioactivity and toxicity parameters calculation of some selected anti-tuberculosis agents. To design a new molecule having good pharmacological profile, this study will provide the lead information.Key Words: Tuberculosis (TB), Bacillus Calmette-Guerin vaccine, TPSA, In Silico toxicity


AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 599-609 ◽  
Author(s):  
F. S. Alvi ◽  
J. A. Ladd ◽  
W. Bower

2021 ◽  
Author(s):  
Caleb J. Barnes ◽  
Carson L. Willey ◽  
Kevin Rosenberg ◽  
Albert Medina ◽  
Abigail T. Juhl

Sign in / Sign up

Export Citation Format

Share Document