scholarly journals A QUANTITATIVE INVESTIGATION OF THE WATER CONDENSATION INSIDE TUBES OF COMPACT CHARGE AIR COOLER

2015 ◽  
Author(s):  
Robin Cash
Author(s):  
Jeongyong Choi ◽  
Sridev Satpathy ◽  
John Hoard ◽  
Daniel Styles ◽  
Chih-Kuang Kuan

In recent years, many engine manufacturers have turned to downsizing and boosting of gasoline engines in order to meet the ever more stringent fuel economy and emissions regulations. With an increase in the number of turbocharged gasoline engines, solutions are required to manage knock under a range of operating conditions. The charge air cooler has been introduced to mitigate knock. Moreover, the engine is required to operate with spark retard and/or boost reduction to provide knock reduction leading to reduced fuel economy. Under some operating conditions water can condense in the charge air cooler (CAC). Corrugated plate separators have been widely used in gas-water separation and oil-water separation in many industries including marine diesel engines. However, this sort of separator has not been applied to gasoline engines in vehicles to separate the condensation in the charged air. In this paper, a 1-D condensation model to estimate the potential amount of water condensation and entrainment from the charge air coolers is presented. An approach to designing a unit to separate condensation in the flow from the charge air cooler while maintaining a low pressure drop is described. The design approach provides correlations of separator geometries versus separation and pressure drop performance. The study is developed using a 3-D computational model for analyzing charge air and condensation flow. The model results of the 1-D condensation model and the 3-D computational model have been validated by experiments on an engine-dynamometer based test cell. The set-up incorporates a 4 cylinder gasoline direct injection (GDI) turbocharged engine. An air-to-air charge air cooler is mounted under the engine. The intake air for the engine is supplied using a combustion air unit which enables the operators to control the temperature and humidity. Test conditions have been identified to demonstrate the phenomenon of CAC water condensation. Measurements of water condensation and motion through the system confirm the results of models. A separator has been designed that achieves high separation efficiency and low pressure drop.


2017 ◽  
Vol 11 (6) ◽  
pp. 414
Author(s):  
S. P. Gadewar ◽  
S. H. Gawande ◽  
S. A. Barhate

2018 ◽  
Vol 49 (17) ◽  
pp. 1705-1720 ◽  
Author(s):  
Qing Zhang ◽  
Xuesheng Wang ◽  
Weicheng Ruan ◽  
Qinzhu Chen ◽  
Zilong Liu

2018 ◽  
Vol 59 (4) ◽  
Author(s):  
Matilde M. Canepa ◽  
Alessandra Gobbi ◽  
Gabriele Tibaldi ◽  
Massimiliano Grassi

Author(s):  
A.M. Semiletov ◽  
◽  
Yu.B. Makarychev ◽  
A.A. Chirkunov ◽  
L.P. Kazansky ◽  
...  

The application of mixed corrosion inhibitor (CI), which is an equimolar composition of oleoyl sarcosinate (SOS) and sodium flufenamate (SFF), for protection of D16 aluminum alloy from atmospheric corrosion has been studied. The polarization measurements used to assess the effectiveness of preliminary passivation of the alloy with solutions of SOS, SFF and their composition showed significant advantages of mixed CI. The XPS method was used to study features of CI adsorption on the surface of D16 alloy. It has been established that upon adsorption of SOS and SFF separately a monolayer is formed, firmly bonded to the alloy surface, thickness of which is not exceeding 2.6—3.2 nm. After the joint adsorption of these CI, the layer thickness reaches 12—20 nm. The composition of this layer includes a considerable amount of Al3+ ions (~20%) related to their compounds with SFF and SOS, as well as to aluminum hydroxides. A possible mechanism for the formation of such a protective layer is proposed. The results of corrosion tests in a humid atmosphere with daily water condensation on samples of D16 alloy confirmed the high protective ability of the mixed CI film.


Sign in / Sign up

Export Citation Format

Share Document