Crash Pulse Characterization to Minimize Occupant Injuries in Offset Frontal Crash

2017 ◽  
Author(s):  
Kantilal P. Patil ◽  
Viswanatha Saddala
Author(s):  
Chandrashekhar K. Thorbole ◽  
Stephen A. Batzer

During frontal collisions, two central characteristics that define a vehicle’s crashworthiness are the occupant compartment deceleration magnitude and the level of occupant compartment intrusion. The deceleration severity determines seat belt loading for restrained occupants and the severity of secondary impacts of occupants against interior structures. Occupant compartment intrusion diminishes the survival space and increases the probability of individual occupants receiving worst injuries. Proper evaluation of a vehicle’s crashworthiness requires full scale crash testing as per standards defined by FMVSS 208, and this physical testing could be supplemented by virtual testing. The 208 standard specifies performance requirements for the vehicle in order to reduce the number and severity of the occupant injuries. FMVSS 208 crash testing involves rigid barrier impact tests at 30 mph, and the vehicle must be certified for all impact angles from −30 to +30 degrees. Allowance is made for the manufacturer to substitute engineering judgement for actual testing at each angle. The agreement of the vehicle to the test requirements ensures a reasonable degree of occupant safety. This study investigates virtual frontal testing to replicate severe crashes resulting in occupant compartment intrusion. The study is conducted using a validated FEA model of a 1998 Chevrolet S-10 standard cab pickup truck. It details simulation results from a variety of impact angles and velocities in order to determine the best potential test procedure for a frontal crash scenario. The results of this computational analysis demonstrate the offset frontal MDB (vehicle-to-vehicle) impact test procedure to be rigorous and capable of evaluating both the aspect of crashworthy performance of the vehicle. This test procedure resulted significant cabin intrusion along with cabin deceleration severity comparable to frontal rigid barrier 30 mph full width test.


2005 ◽  
Vol 3 (6) ◽  
pp. 36
Author(s):  
Anthony J. Billittier IV, MD ◽  
E. Brooke Lerner, PhD ◽  
Alan Blatt, MS ◽  
Michael Viksjo, MD

The objective of this study was to describe our initial experience with an automatic crash notification device (ACND) and to compare dynamic vehicle data acquired by the ACND in motor vehicle crashes (MVCs) for occupants with and without cervical strain injuries. Eight hundred and seventy-four cars were equipped with an ACND, which detected crashes by analyzing vehicular acceleration in real time. The device placed an automated call to 9-1-1 whenever the pre-established crash threshold was exceeded and transmitted crash location, principal direction of crash force, and crash change in velocity. All occupants involved in an MVC involving an ACNDequipped vehicle were contacted and asked to report anatomical location(s) of any injuries. Those with cervical- strain-type complaints were identified through post-crash interviews and medical record reviews. Principle direction of force and crash change in velocity were compared between these two groups. Dynamic vehicle data were obtained for 15 crashes involving 26 occupants, with crash change in velocity ranging from 12 kph to 42 kph. The principle direction of force was 12 o’clock (six vehicles), 2 o’clock (three vehicles), 3 o’clock (two vehicles), 6 o’clock (one vehicle), 9 o’clock (one vehicle), and 11 o’clock (two vehicles). Thirteen occupants reported a variety of injuries. Five reported cervical-strain-type complaints including three in a rear-end crash (principle direction of force 6 o’clock, change in velocity 29 kph), one in a frontal crash (principle direction of force 12 o’clock, change in velocity 14 kph), and one in a right-frontal crash (principle direction of force 2 o’clock, change in velocity 26 kph). Results indicate that, although the number of MVCs was small, no cervical-strain-type complaints were reported when change in velocity was less than 14 kph. Dynamic vehicular information obtained from the ACND at time of crash may be useful for instantaneous injury prediction. The ability to predict injury in real time may some day allow for better allocation of on-scene resources.


2021 ◽  
Vol 31 (4) ◽  
pp. 417-420
Author(s):  
Tommaso Cappello ◽  
Zoya Popovic ◽  
Kevin Morris ◽  
Angelo Cappello

2007 ◽  
Vol 15 (24) ◽  
pp. 16061 ◽  
Author(s):  
Xin Zhu ◽  
Tissa C. Gunaratne ◽  
Vadim V. Lozovoy ◽  
Marcos Dantus

2010 ◽  
Vol 68 (5) ◽  
pp. 1099-1105 ◽  
Author(s):  
Gabriel E. Ryb ◽  
Cynthia Burch ◽  
Timothy Kerns ◽  
Patricia C. Dischinger ◽  
Shiu Ho
Keyword(s):  

IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 3131-3138 ◽  
Author(s):  
Bernard B. Munyazikwiye ◽  
Hamid Reza Karimi ◽  
Kjell G. Robbersmyr

Sign in / Sign up

Export Citation Format

Share Document