Fuel Consumption Reduction on Heavy-Duty and Light-Duty Commercial Vehicles by Means of Advanced Central Tire Inflation Systems

2018 ◽  
Vol 11 (5) ◽  
pp. 267-289 ◽  
Author(s):  
Stefano D'Ambrosio ◽  
Elia Francesco Mameli ◽  
Roberto Vitolo ◽  
Ivan Calaon ◽  
Enrica Capitelli ◽  
...  
2020 ◽  
Vol 5 (3-4) ◽  
pp. 173-186
Author(s):  
Matthias Werra ◽  
Axel Sturm ◽  
Ferit Küçükay

Abstract This paper presents a virtual toolchain for the optimal concept and prototype dimensioning of 48 V hybrid drivetrains. First, this toolchain is used to dimension the drivetrain components for a 48 V P0+P4 hybrid which combines an electric machine in the belt drive of the internal combustion engine and a second electric machine at the rear axle. On an optimal concept level, the power and gear ratios of the electric components in the 48 V system are defined for the best fuel consumption and performance. In the second step, the optimal P0+P4 drivetrain is simulated with a prototype model using a realistic rule-based operating strategy to determine realistic behavior in legal cycles and customer operation. The optimal variant shows a fuel consumption reduction in the Worldwide harmonized Light Duty Test Cycle of 13.6 % compared to a conventional vehicle whereas the prototype simulation shows a relatively higher savings potential of 14.8 %. In the prototype simulation for customer operation, the 48 V hybrid drivetrain reduces the fuel consumption by up to 24.6 % in urban areas due to a high amount of launching and braking events. Extra-urban and highway areas show fuel reductions up to 11.6 % and 4.2 %, respectively due to higher vehicle speed and power requirements. The presented virtual toolchain can be used to combine optimal concept dimensioning with close to reality behaviour simulations to maximise realistic statements and minimize time effort.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Reza Kazemi ◽  
Mohsen Raf’at ◽  
Amir Reza noruzi

Optimization of gear ratio with the objectives of fuel consumption reduction and vehicle longitudinal performance improvement has been the subject of many studies for years. Finding a strategy for changing gears with specific control objectives, especially in the design of vehicles equipped with Continuously Variable Transition system (CVT), which has advantage of arbitrary selection of gear ratio, has been the aim of some recent researches. Optimal control theory has rarely been used in the previous control approaches applied to such systems due to the limitations in the use of fast computational systems. The aim of this study is to design the aforementioned gear ratio change strategy and related control rules on the basis of optimal control. A driver model is also designed for the simulation of driving cycle using MATLAB Simulink Toolbar. Results of implementing optimal control rules in vehicle longitudinal movement simulation with the aim of fuel consumption reduction are finally represented. The presented method has the remarkable advantage of considerable fuel consumption reduction in comparison to other proposed approaches for gear ratio change strategies.


MTZ worldwide ◽  
2015 ◽  
Vol 76 (11) ◽  
pp. 24-29 ◽  
Author(s):  
Om Parkash Bhardwaj ◽  
Bastian Holderbaum ◽  
Elmar Grußmann ◽  
Fabian Fricke

2013 ◽  
Vol 420 ◽  
pp. 355-362
Author(s):  
Rong Yang ◽  
Di Ming Lou ◽  
Pi Qiang Tan ◽  
Zhi Yuan Hu

Establish simulation models of the conventional and parallel hybrid electric back-loading compression sanitation vehicle by AVL CRUISE and MATLAB/Simulink software. Study on control strategy of parallel hybrid electric vehicle based on the work characteristics of back-loading compression sanitation. Results show that: about 24.5% fuel consumption reduction in hybrid modeling compared to the conventional sanitation vehicle under heavy commercial vehicle standard test cycle (C-WTVC, Adapted World Transient Vehicle Cycle), and battery SOC was little changed at 50%. About 32% fuel consumption reduction in hybrid compared to the conventional vehicle under the actual road testing spectrum, and SOC increased about 21.6% relative to the initial state. It controls the engine to work in more stable operation region and reduces engine idle time, but increases engine start-stop times. It also could provide some references for specific engine development of parallel hybrid electric vehicle


Sign in / Sign up

Export Citation Format

Share Document