Development of a Natural Gas Engine with Diesel Engine-like Efficiency Using Computational Fluid Dynamics

Author(s):  
Ahmed Abdul Moiz ◽  
Zainal Abidin ◽  
Robert Mitchell ◽  
Michael Kocsis
Author(s):  
Daniel B. Olsen ◽  
Ryan K. Palmer ◽  
Charles E. Mitchell

Formaldehyde emissions from stationary natural gas engines are regulated in the United States, as mandated by the 1990 Clean Air Act Amendments. This work aims to advance the understanding of formaldehyde formation in large bore (>36 cm) natural gas engines. Formaldehyde formation in a large bore natural gas engine is modeled utilizing computational fluid dynamics and chemical kinetics. The top land crevice volume is believed to play an important role in the formation mechanisms of engine-out formaldehyde. This work focuses specifically on the top land crevice volume in the Cooper-Bessemer LSVB large bore 4-stroke cycle natural gas engine. Chemical kinetic modeling predicts that the top land crevice volume is responsible for the formation of 22 ppm of engine-out formaldehyde. Based on a raw exhaust concentration of 80 ppm, this constitutes about 27% of engine-out formaldehyde. Simplifying assumptions made for the chemical kinetic modeling are validated using computational fluid dynamics. Computational fluid dynamic analysis provided confirmation of crevice volume mass discharge timing. It also provided detailed pressure, temperature and velocity profiles within the top land crevice volume at various crank angle degrees.


Author(s):  
Liyan Feng ◽  
Jun Zhai ◽  
Chuang Qu ◽  
Bo Li ◽  
Jiangping Tian ◽  
...  

Using an enriched pre-chamber is an effective way to extend the lean limit, to reduce the nitrogen oxide emissions and to avoid abnormal combustion in spark ignition natural-gas engines. Enrichment injection in the pre-chamber of a spark ignition natural-gas engine determines the flow field and the fuel–air mixture formation quality in the pre-chamber and has a profound influence on the combustion performance of the engine. In order to study the characteristics of enrichment injection in the pre-chamber of a natural-gas engine, two-dimensional particle image velocimetry measurements and three-dimensional computational fluid dynamics calculations were carried out. The influence of the enrichment injection angle on the engine performance was investigated with the aid of a computational fluid dynamics simulation tool. The results indicate that a change in the enrichment injection angle directly affects the gas motion, the fuel–air mixture formation, the flame propagation and the formation of nitrogen oxides in the pre-chamber and further influences the penetration of the flame jets, the combustion temperature distribution and the formation of nitrogen oxides in the main chamber. There is an optimal injection angle for this research engine. Of the four injection angles that were investigated, an injection angle of 14° results in the lowest nitrogen oxide emissions.


2013 ◽  
Vol 318 ◽  
pp. 371-374
Author(s):  
Chen Fan

There was a conflict between NOx emission and engine power of modified natural gas engine. Influence facters of NOx emission and emission characteristics of existing modified engine were studied. Emission and engine power of natural gas engine modified from gasoline and diesel engine were compared. Then some sugesstion are brought out for designing low NOx emission natural gas engine and promote engine power.


2014 ◽  
Vol 46 (1) ◽  
pp. 85-93
Author(s):  
Mikhail Shatrov ◽  
Aleksej Khatchiyan ◽  
Vladimir Sinyavskiy ◽  
Ivan Shishlov ◽  
Andrey Vakulenko

Parameters of natural gas engines were calculated with the aim to determine the optimal way of their working process organization. Analysis of calculations results demonstrated that quality power level control ensured the improvement of parameters of investigated engines. Calculations showed that compared with the diesel engine, the gas engine with quantity power level control, internal mixture formation and glow plug ignition of the gas-air mixture ensured the decrease of СО2 emissions by 26.8%, and the natural gas engine with quality power level control, external mixture formation and gas-air mixture ignition by a small pilot portion of fine atomized diesel fuel supplied by a Common Rail fuel system – by 25.5%. Therefore, one can choose one or another method of diesel engine conversion for operation on gas fuel considering available technical opportunities and with minimal expenses.


2016 ◽  
pp. 725-734 ◽  
Author(s):  
G Benvenuto ◽  
M Laviola ◽  
R Zaccone ◽  
U Campora

Sign in / Sign up

Export Citation Format

Share Document