Chemical and Physical Characteristics of Organic Particulate Matter from Exhaust After-Treatment System of Euro 6 Diesel Engine Operating at Full Load

Author(s):  
Ezio Mancaruso ◽  
Bianca Maria Vaglieco ◽  
Wolfgang Gstrein ◽  
Konstantinos Priftis ◽  
Antonio Tregrossi ◽  
...  
2021 ◽  
Author(s):  
Amit Tiwari ◽  
Anurag Durve ◽  
Pradhan Srinivasan ◽  
Jyotirmoy Barman

2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Soni S. Wirawan dkk

Biodiesel is a viable substitute for petroleum-based diesel fuel. Its advantages are improved lubricity, higher cetane number and cleaner emission. Biodiesel and its blends with petroleum-based diesel fuel can be used in diesel engines without any signifi cant modifi cations to the engines. Data from the numerous research reports and test programs showed that as the percent of biodiesel in blends increases, emission of hydrocarbons (HC), carbon monoxide (CO), and particulate matter (PM) all decrease, but the amount of oxides of nitrogen (NOx) and fuel consumption is tend to increase. The most signifi cant hurdle for broader commercialization of biodiesel is its cost. In current fuel price policy in Indonesia (especially fuel for transportation), the higher percent of biodiesel in blend will increase the price of blends fuel. The objective of this study is to assess the optimum blends of biodiesel with petroleum-based diesel fuel from the technically and economically consideration. The study result recommends that 20% biodiesel blend with 80% petroleum-based diesel fuel (B20) is the optimum blend for unmodifi ed diesel engine uses.Keywords: biodiesel, emission, optimum, blend


2020 ◽  
Vol 4 (1) ◽  
pp. 18
Author(s):  
Richard Viskup ◽  
Yana Vereshchaga ◽  
Anna Theresia Stadler ◽  
Theresa Roland ◽  
Christoph Wolf ◽  
...  

Pollutant emissions from vehicles form major sources of metallic nanoparticles entering the environment and surrounding atmosphere. In this research, we spectrochemically analyse the chemical composition of particle matter emissions from in-use diesel engine passenger vehicles. We extracted diesel particulate matter from the end part of the tail pipes of more than 70 different vehicles. In the laboratory, we used the high-resolution laser-induced breakdown spectroscopy (LIBS) spectrochemical analytical technique to sensitively analyse chemical elements in different DPM samples. We found that PM is composed of major, minor and trace chemical elements. The major compound in PM is not strictly carbon but also other adsorbed metallic nanoparticles such as iron, chromium, magnesium, zinc and calcium. Besides the major elements in DPM, there are also minor elements: silicon, nickel, titan, potassium, strontium, molybdenum and others. Additionally, in DPM are adsorbed atomic trace elements like barium, boron, cobalt, copper, phosphorus, manganese and platinum. All these chemical elements form the significant atomic composition of real PM from in-use diesel engine vehicles.


2012 ◽  
Vol 120 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Wan-Yun Cheng ◽  
Jenna Currier ◽  
Philip A. Bromberg ◽  
Robert Silbajoris ◽  
Steven O. Simmons ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document