exhaust after treatment
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 2)

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1472
Author(s):  
Gianluca Landi

Structured catalytic reactors are widely used in the automotive sector for exhaust after-treatment, thus representing the state-of-art technology in this sector [...]


Author(s):  
Florian Rümmele ◽  
Alexander Susdorf ◽  
Syed Muhammad Salman Haider ◽  
Robert Szolak

AbstractSynthetic fuels and fuel blends like OMEs can contribute to tank-to-wheel CO2 emission savings. At the same time, it is known that these fuels have a lower exhaust temperature compared to conventional diesel. This effect has major impact on the exhaust after-treatment system, particularly in cold start conditions. This paper investigates the light-off behavior of exhaust gases containing OMEs by temperature-programmed oxidation experiments using a state-of-the-art oxidation catalyst. The main side product of catalytic oxidation of OMEs between 100 °C and the oxidation temperature T50, which was around 160 °C, was shown to be formaldehyde. While alkane oxidation, in this case heptane, was little influenced by OME oxidation, the oxidation temperature T50 of CO increases by more than 10 °C by OME addition. Nitrogen monoxide impeded the oxidation of OME in a similar way to the other components investigated. Due to the amount of FA produced and its toxicity, it could be concluded that it is necessary to heat up exhaust after-treatment systems of OME diesel engines even faster than conventional diesel exhaust after-treatment systems. The relatively high reactivity of OME on oxidation catalyst can be used by active thermal management approaches.


2021 ◽  
Author(s):  
Amit Tiwari ◽  
Anurag Durve ◽  
Pradhan Srinivasan ◽  
Jyotirmoy Barman

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 635
Author(s):  
Rasmus Jonsson ◽  
Phuoc Hoang Ho ◽  
Aiyong Wang ◽  
Magnus Skoglundh ◽  
Louise Olsson

Hydrocarbon traps can be used to bridge the temperature gap from the cold start of a vehicle until the exhaust after-treatment catalyst has reached its operating temperature. In this work, we investigate the effect of zeolite structure (ZSM-5, BEA, SSZ-13) and the effect of La addition to H-BEA and H-ZSM-5 on the hydrocarbon storage capacity by temperature-programmed desorption and DRIFT spectroscopy. The results show that the presence of La has a significant effect on the adsorption characteristics of toluene on the BEA-supported La materials. A low loading of La onto zeolite BEA (2% La-BEA) improves not only the toluene adsorption capacity but also the retention of toluene. However, a higher loading of La results in a decrease in the adsorbed amount of toluene, which likely is due to partial blocking of the pore of the support. High loadings of La in BEA result in a contraction of the unit cell of the zeolite as evidenced by XRD. A synergetic effect of having simultaneously different types of hydrocarbons (toluene, propene, and propane) in the feed is found for samples containing ZSM-5, where the desorption temperature of propane increases, and the quantity that desorbed increases by a factor of four. This is found to be due to the interaction between toluene and propane inside the structure of the zeolite.


2020 ◽  
Vol 267 ◽  
pp. 114844 ◽  
Author(s):  
Chung Ting Lao ◽  
Jethro Akroyd ◽  
Nickolas Eaves ◽  
Alastair Smith ◽  
Neal Morgan ◽  
...  

Day to day increase in air pollution is one of the serious issues nowadays. One of the main contributors is automobile emissions. It contains gases like carbon dioxide, carbon monoxide, hydrocarbon, nitrogen oxides, and particular matters. In order to address such issues, this paper is focused on the reduction of emissions by modifying the design of an exhaust after-treatment device. The analysis is carried out on a 4-stroke single-cylinder 149cc FZ-S BS4 bike two-wheeler gasoline engine.CO and HC emissions absorbed by an aqueous solution having different TDS of aqua 90ppm RO water, 1000ppm Municipality water, and 10000ppm seawater. Such aqueous solution contains calcium powder and activated carbon in 10:0.5:0.5, 10:1:1 and 10:2:2 in proportion respectively. An optimum solution derived which having a mixture of 10:1:1 proportion having 10000ppm seawater is derived which shows reduction in CO by 50% and HC emission by 40% as compare conventional muffler exhaust emission. The IoT device is used with the MQ-7 sensor to measure CO emission from a modified device and data obtained are compared with PUC (Pollution under control) certified center. This research is to optimize emission from the existing gasoline engine, from April 2017 BS4 is implemented in INDIA nationwide & BS6 will be going to implement by 2020. From April 2017 manufacturer are not allowed to build new engines below BS4 standard but customer those who are having an older version of engines are not having any effect of BS4 & their engines are still emitting more pollution than the current emission norms. More than 100 million of twowheeler engines were sold in between Feb‘06- March’17. This study aims to provide a solution for such engines not from the manufacturer side but from the consumer side to upgrade their vehicle to satisfy future emission norms so that human health will be less affected by such emissions.


Sign in / Sign up

Export Citation Format

Share Document