Recent Advanced Designs of Propulsion Systems for Earth-to-Earth Orbit Transfer

1961 ◽  
Author(s):  
H. S. Young
Aerospace ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
Dillon O’Reilly ◽  
Georg Herdrich ◽  
Darren F. Kavanagh

Over 2500 active satellites are in orbit as of October 2020, with an increase of ~1000 smallsats in the past two years. Since 2012, over 1700 smallsats have been launched into orbit. It is projected that by 2025, there will be 1000 smallsats launched per year. Currently, these satellites do not have sufficient delta v capabilities for missions beyond Earth orbit. They are confined to their pre-selected orbit and in most cases, they cannot avoid collisions. Propulsion systems on smallsats provide orbital manoeuvring, station keeping, collision avoidance and safer de-orbit strategies. In return, this enables longer duration, higher functionality missions beyond Earth orbit. This article has reviewed electrostatic, electrothermal and electromagnetic propulsion methods based on state of the art research and the current knowledge base. Performance metrics by which these space propulsion systems can be evaluated are presented. The article outlines some of the existing limitations and shortcomings of current electric propulsion thruster systems and technologies. Moreover, the discussion contributes to the discourse by identifying potential research avenues to improve and advance electric propulsion systems for smallsats. The article has placed emphasis on space propulsion systems that are electric and enable interplanetary missions, while alternative approaches to propulsion have also received attention in the text, including light sails and nuclear electric propulsion amongst others.


2021 ◽  
Author(s):  
Sukhmander Singh ◽  
Sanjeev Kumar ◽  
Shravan Kumar Meena ◽  
Sujit Kumar Saini

Technically, there are two types of propulsion systems namely chemical and electric depending on the sources of the fuel. Electrostatic thrusters are used for launching small satellites in low earth orbit which are capable to provide thrust for long time intervals. These thrusters consume less fuel compared to chemical propulsion systems. Therefore for the cost reduction interests, space scientists are interested to develop thrusters based on electric propulsion technology. This chapter is intended to serve as a general overview of the technology of electric propulsion (EP) and its applications. Plasma based electric propulsion technology used for space missions with regard to the spacecraft station keeping, rephrasing and orbit topping applications. Typical thrusters have a lifespan of 10,000 h and produce thrust of 0.1–1 N. These devices have E→×B→ configurations which is used to confine electrons, increasing the electron residence time and allowing more ionization in the channel. Almost 2500 satellites have been launched into orbit till 2020. For example, the ESA SMART-1 mission (Small Mission for Advanced Research in Technology) used a Hall thruster to escape Earth orbit and reach the moon with a small satellite that weighed 367 kg. These satellites carrying small Hall thrusters for orbital corrections in space as thrust is needed to compensate for various ambient forces including atmospheric drag and radiation pressure. The chapter outlines the electric propulsion thruster systems and technologies and their shortcomings. Moreover, the current status of potential research to improve the electric propulsion systems for small satellite has been discussed.


Aerospace ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 67 ◽  
Author(s):  
George-Cristian Potrivitu ◽  
Yufei Sun ◽  
Muhammad Wisnuh Aggriawan bin Rohaizat ◽  
Oleksii Cherkun ◽  
Luxiang Xu ◽  
...  

The age of space electric propulsion arrived and found the space exploration endeavors at a paradigm shift in the context of new space. Mega-constellations of small satellites on low-Earth orbit (LEO) are proposed by many emerging commercial actors. Naturally, the boom in the small satellite market drives the necessity of propulsion systems that are both power and fuel efficient and accommodate small form-factors. Most of the existing electric propulsion technologies have reached the maturity level and can be the prime choices to enable mission versatility for small satellite platforms in Earth orbit and beyond. At the Plasma Sources and Applications Centre/Space Propulsion Centre (PSAC/SPC) Singapore, a continuous effort was dedicated to the development of low-power electric propulsion systems that can meet the small satellites market requirements. This review presents the recent progress in the field of electric propulsion at PSAC/SPC Singapore, from Hall thrusters and thermionic cathodes research to more ambitious devices such as the rotamak-like plasma thruster. On top of that, a review of the existing vacuum facilities and plasma diagnostics used for electric propulsion testing and characterization is included in the present research.


Sign in / Sign up

Export Citation Format

Share Document