Study on Atomisation and Fuel Drop Size Distribution in Direct Injection Diesel Spray

1994 ◽  
Author(s):  
Hoang Xuan Quoc ◽  
Maurice Brun
1982 ◽  
Vol 6 (5) ◽  
pp. 323-327 ◽  
Author(s):  
N. K. Rizk ◽  
A. H. Lefebvre

2014 ◽  
Vol 53 (6) ◽  
pp. 1618-1635 ◽  
Author(s):  
Elisa Adirosi ◽  
Eugenio Gorgucci ◽  
Luca Baldini ◽  
Ali Tokay

AbstractTo date, one of the most widely used parametric forms for modeling raindrop size distribution (DSD) is the three-parameter gamma. The aim of this paper is to analyze the error of assuming such parametric form to model the natural DSDs. To achieve this goal, a methodology is set up to compare the rain rate obtained from a disdrometer-measured drop size distribution with the rain rate of a gamma drop size distribution that produces the same triplets of dual-polarization radar measurements, namely reflectivity factor, differential reflectivity, and specific differential phase shift. In such a way, any differences between the values of the two rain rates will provide information about how well the gamma distribution fits the measured precipitation. The difference between rain rates is analyzed in terms of normalized standard error and normalized bias using different radar frequencies, drop shape–size relations, and disdrometer integration time. The study is performed using four datasets of DSDs collected by two-dimensional video disdrometers deployed in Huntsville (Alabama) and in three different prelaunch campaigns of the NASA–Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) ground validation program including the Hydrological Cycle in Mediterranean Experiment (HyMeX) special observation period (SOP) 1 field campaign in Rome. The results show that differences in rain rates of the disdrometer DSD and the gamma DSD determining the same dual-polarization radar measurements exist and exceed those related to the methodology itself and to the disdrometer sampling error, supporting the finding that there is an error associated with the gamma DSD assumption.


Author(s):  
Jens Kamplade ◽  
Tobias Mack ◽  
Andre Küsters ◽  
Peter Walzel

The breakup process of threads from laminar operating rotary atomizer (LamRot) is in the scope of this investigation. A similarity trail is used to investigate the influence of the thread deformation within a cross-wind flow on the thread breakup process. The threads emerge from laminar open channel flow while the liquid viscosity, the flow rate, the pipe inclination towards the gravity as well as the cross-wind velocity is varied. The breakup length and drop size distribution are analyzed by a back-light photography setup. The results thus obtained are compared with results of previous examination by Schröder [1] and Mescher [2]. It is found that the breakup length decreases and that the drop size grows with rising cross-wind intensity, while the width of the drop size distribution increases. At the same operating conditions, the breakup length for laminar open channel flow is smaller compared to completely filled capillaries. In contrast to this observation, the drop size distribution remains nearly unchanged. The critical velocity for the transition from axisymmetric to wind-induced thread breakup was found to be smaller than for completely filled capillaries.


Sign in / Sign up

Export Citation Format

Share Document