scholarly journals Evaluation of Gamma Raindrop Size Distribution Assumption through Comparison of Rain Rates of Measured and Radar-Equivalent Gamma DSD

2014 ◽  
Vol 53 (6) ◽  
pp. 1618-1635 ◽  
Author(s):  
Elisa Adirosi ◽  
Eugenio Gorgucci ◽  
Luca Baldini ◽  
Ali Tokay

AbstractTo date, one of the most widely used parametric forms for modeling raindrop size distribution (DSD) is the three-parameter gamma. The aim of this paper is to analyze the error of assuming such parametric form to model the natural DSDs. To achieve this goal, a methodology is set up to compare the rain rate obtained from a disdrometer-measured drop size distribution with the rain rate of a gamma drop size distribution that produces the same triplets of dual-polarization radar measurements, namely reflectivity factor, differential reflectivity, and specific differential phase shift. In such a way, any differences between the values of the two rain rates will provide information about how well the gamma distribution fits the measured precipitation. The difference between rain rates is analyzed in terms of normalized standard error and normalized bias using different radar frequencies, drop shape–size relations, and disdrometer integration time. The study is performed using four datasets of DSDs collected by two-dimensional video disdrometers deployed in Huntsville (Alabama) and in three different prelaunch campaigns of the NASA–Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) ground validation program including the Hydrological Cycle in Mediterranean Experiment (HyMeX) special observation period (SOP) 1 field campaign in Rome. The results show that differences in rain rates of the disdrometer DSD and the gamma DSD determining the same dual-polarization radar measurements exist and exceed those related to the methodology itself and to the disdrometer sampling error, supporting the finding that there is an error associated with the gamma DSD assumption.

2017 ◽  
Vol 17 (18) ◽  
pp. 11567-11589 ◽  
Author(s):  
Shannon L. Mason ◽  
J. Christine Chiu ◽  
Robin J. Hogan ◽  
Lin Tian

Abstract. Satellite remote sensing of rain is important for quantifying the hydrological cycle, atmospheric energy budget, and cloud and precipitation processes; however, radar retrievals of rain rate are sensitive to assumptions about the raindrop size distribution. The upcoming EarthCARE satellite will feature a 94 GHz Doppler radar alongside lidar and radiometer instruments, presenting opportunities for enhanced retrievals of the raindrop size distribution.


2016 ◽  
Vol 33 (2) ◽  
pp. 377-389 ◽  
Author(s):  
Eiichi Yoshikawa ◽  
V. Chandrasekar ◽  
Tomoo Ushio ◽  
Takahiro Matsuda

AbstractA raindrop size distribution (DSD) retrieval method for a weather radar network consisting of several X-band dual-polarization radars is proposed. An iterative maximum likelihood (ML) estimator for DSD retrieval in a single radar was developed in the authors’ previous work, and the proposed algorithm in this paper extends the single-radar retrieval to radar-networked retrieval, where ML solutions in each single-radar node are integrated based on a Bayesian scheme in order to reduce estimation errors and to enhance accuracy. Statistical evaluations of the proposed algorithm were carried out using numerical simulations. The results with eight radar nodes showed that the bias and standard errors are −0.05 and 0.09 in log(Nw); and Nw (mm−1 m−3) and 0.04 and 0.09 in D0 (mm) in an environment with fluctuations in dual-polarization radar measurements (normal distributions with standard deviations of 0.8 dBZ, 0.2 dB, and 1.5° in ZHm, ZDRm, and ΦDPm, respectively). Further error analyses indicated that the estimation accuracy depended on the number of radar nodes, the ranges of varying μ, the raindrop axis ratio model, and the system bias errors in dual-polarization radar measurements.


2001 ◽  
Vol 5 (4) ◽  
pp. 615-628 ◽  
Author(s):  
R. Uijlenhoet

Abstract. The conversion of the radar reflectivity factor Z(mm6m-3) to rain rate R(mm h-1 ) is a crucial step in the hydrological application of weather radar measurements. It has been common practice for over 50 years now to take for this conversion a simple power law relationship between Z and R. It is the purpose of this paper to explain that the fundamental reason for the existence of such power law relationships is the fact that Z and R are related to each other via the raindrop size distribution. To this end, the concept of the raindrop size distribution is first explained. Then, it is demonstrated that there exist two fundamentally different forms of the raindrop size distribution, one corresponding to raindrops present in a volume of air and another corresponding to those arriving at a surface. It is explained how Z and R are defined in terms of both these forms. Using the classical exponential raindrop size distribution as an example, it is demonstrated (1) that the definitions of Z and R naturally lead to power law Z–R relationships, and (2) how the coefficients of such relationships are related to the parameters of the raindrop size distribution. Numerous empirical Z–R relationships are analysed to demonstrate that there exist systematic differences in the coefficients of these relationships and the corresponding parameters of the (exponential) raindrop size distribution between different types of rainfall. Finally, six consistent Z–R relationships are derived, based upon different assumptions regarding the rain rate dependence of the parameters of the (exponential) raindrop size distribution. An appendix shows that these relationships are in fact special cases of a general Z–R relationship that follows from a recently proposed scaling framework for describing raindrop size distributions and their properties. Keywords: radar hydrology, raindrop size distribution, radar reflectivity–rain rate relationship


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 562
Author(s):  
Yingjue Wang ◽  
Jiafeng Zheng ◽  
Zhigang Cheng ◽  
Bingyun Wang

Precipitation microphysics over the Tibetan Plateau (TP) remain insufficiently understood, due to the lack of observations and studies. This paper presents a comprehensive investigation of the raindrop size distribution (DSD) for rainfall that happened on the eastern slope of TP in summer. DSD differences between different rain types and under different rain rates are investigated. Confidential empirical relationships between the gamma shape and slope parameters, and between reflectivity and rain rate are proposed. DSD properties in this area are also compared with those in other areas. The results indicate that the stratiform and convective rains contribute to different rain duration and amount, with diverse rainfall macro- and microphysical properties. The rain spectra of two rain types can become broader with higher concentrations as the rain rate increases. DSDs in this area are different to those in other areas. The stratiform DSD is narrower than that in the non-plateau area. The two rain types of this area both have higher number concentrations for 0.437–1.625 mm raindrops than those of the mid-TP. The relationships of shape–slope parameters and reflectivity–rain rate in this area are also different from those in other areas. The rain spectra in this area can produce a larger slope parameter under the same shape parameter than in the mid-TP. The convective rain can produce a smaller rain rate under the same reflectivity. The accuracy proposed reflectivity–rain rate relationship in application to quantitative rainfall estimation is also discussed. The results show that the relationship has an excellent performance when the rain rate exceeds 1 mm h−1.


2005 ◽  
Vol 44 (7) ◽  
pp. 1146-1151 ◽  
Author(s):  
Axel Seifert

Abstract The relation between the slope and shape parameters of the raindrop size distribution parameterized by a gamma distribution is examined. The comparison of results of a simple rain shaft model with an empirical relation based on disdrometer measurements at the surface shows very good agreement, but a more detailed discussion reveals some difficulties—for example, deviations from the gamma shape and the overestimation of collisional breakup.


2020 ◽  
Vol 21 (6) ◽  
pp. 1161-1169
Author(s):  
Massimiliano Ignaccolo ◽  
Carlo De Michele

AbstractThe Z–R relationship is a scaling-law formulation, Z = ARb, connecting the radar reflectivity Z to the rain rate R. However, more than 100 Z–R relationships, with different values of the parameters, have been reported in literature. This abundance of relationships is in itself a strong indication that no one “physical” relationship exists, a state of affairs that we find similar to that of the protagonist of Luigi Pirandello’s novel One, No One and One Hundred Thousand. Nevertheless the “elevation” of a simple linear fit in the (logR, logZ) space to the role of “scaling law” is such a widespread tenet in literature that it eclipses the simple realization that the abundance of different intercepts and slopes reflects the inhomogeneous nature of rain, and, in ultimate analysis, the statistical variability existing between the number of drops and drop size distribution. Here, we “eliminate” the contribution of the number of drops by rescaling both reflectivity and rainfall rate to per unit drop variables, (Z, R) → (z, r), so that the remaining variability is due only to the variability of the drop size distribution. We use a worldwide database of disdrometer data to show that for the rescaled variables (z, r) only “one,” albeit approximate, scaling law exists.


Sign in / Sign up

Export Citation Format

Share Document