diesel spray
Recently Published Documents


TOTAL DOCUMENTS

861
(FIVE YEARS 116)

H-INDEX

41
(FIVE YEARS 8)

Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122211
Author(s):  
Jingyu Zhu ◽  
Conghui Shan ◽  
Keiya Nishida ◽  
Wuqiang Long ◽  
Dongsheng Dong

Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 121976
Author(s):  
Dongfang Wang ◽  
Zhongjie Shi ◽  
Ziming Yang ◽  
Haiyan Chen ◽  
Manlin Wang ◽  
...  

Fuel ◽  
2021 ◽  
pp. 122784
Author(s):  
Long Liu ◽  
Qihao Mei ◽  
Weinan Jia

Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121344
Author(s):  
Yaozong Li ◽  
Xiangrong Li ◽  
Weiren Cao ◽  
Zhicheng Shi ◽  
Yaqing Bo ◽  
...  

Author(s):  
Samir Chandra Ray ◽  
Jaeheun Kim ◽  
Scinichi Kakami ◽  
Keiya Nishida ◽  
Youichi Ogata

The effects of dwell time on the mixture formation and combustion processes of diesel spray are investigated experimentally. A commercial multihole injector with a 0.123 mm hole diameter is used to inject the fuel. The injection procedure is either a single or split injection with different dwell times, whereas the total amount of injected fuel mass is 5.0 mg per hole. Three dwell times are selected, that is, 0.12, 0.32 and 0.54 ms, with a split ratio of 7:3 based on previous findings. The vapour phase is observed, and the mixture formation pertaining to the equivalence ratio is analysed using the tracer laser absorption scattering (LAS) technique. A high-speed video camera is used to visualise the spray combustion flame luminosity, whereas a two-colour pyrometer system is used to evaluate the soot concentrations and flame temperature. An analysis of the mixture formation based on the spray evaporating condition reveals a more concentrated area of the rich mixture within a 0.32 ms dwell time. In the shortest dwell time of 0.12 ms, the equivalence ratio distribution decreases uniformly from the rich mixture region to the lean mixture region. In the case involving a shorter dwell time, a suitable position for the second injection around the boundaries of the first injection is obtained by smoothly growing the lean mixture and avoiding the large zone of the rich mixture. Therefore, the shortest dwell time is acceptable for mixture formation, considering the overall distribution of the equivalence ratios. Spray combustion analysis results show that the soot formation rate of the single injection and 0.32 ms dwell time case is high and decreases quickly, implying a rapid reduction in the high amount of soot. Consequently, 0.12 ms can be considered the optimal dwell time due to the ignition delay and relatively low soot emission afforded.


2021 ◽  
Author(s):  
Conner Godbold ◽  
Farzad Poursadegh ◽  
Oleksandr Bibik ◽  
Caroline Genzale

Abstract Due to the non-premixed nature of diesel combustion, mixing prior to the reaction zone has proven to be one of the primary factors in emissions formation. Therefore, the advancement of diagnostics used to measure mixing fields in diesel applications is imperative for a greater understanding of how in-cylinder emissions mitigation techniques operate. Towards this goal, we have recently demonstrated the use of a high-speed two-wavelength extinction imaging measurement, UV-VIS DBI, for time-resolved measurements of mixing in a diesel spray. This diagnostic operates by back-lighting the spray with ultra-violet and visible illumination. The visible illumination is selected at a non-absorbing wavelength, such that the visible light is only attenuated by liquid droplet scattering, enabling discrete detection of the liquid-vapor mixture and pure vapor phases of the spray. For this work, Ultraviolet and visible light are generated using a ND:YAG pumped frequency-doubled tunable dye laser operating at 9.9 kHz . The simultaneous UV-Visible illumination is used to back-illuminate a vaporizing diesel spray, and the resulting extinction of each signal is recorded by a pair of high-speed cameras. Using an aromatic tracer (naphthalene, BP = 218 °C) in a base fuel of dodecane (BP = 215–217 °C), the UV illumination (280 nm) is absorbed along the illumination path through the spray, yielding a projected image of line-of-sight optical depth that is proportional to the projected fuel vapor concentration in the pure vapor region of the spray. In this paper, a new method of determining the absorption coefficient for the pure-vapor phase of the spray will be discussed, along with showing how an Inverse-Abel transform can be used to compute planar concentration data from the projected concentration data yielded by the diagnostic. This diagnostic and data processing is applied to diesel sprays from two Bosch CRI3-20 ks1.5 single-orifice injectors (140 μm and 90 μm orifice diameters) injecting into a nonreacting high-pressure and temperature nitrogen environment using a constant-flow, optically-accessible spray chamber operating at 60 bar and 900 K. The mixing data produced agrees well with previously existing mixing data, which further instills confidence in the diagnostic, and gives the diesel combustion community access to mixing field data for a 140 μm orifice diameter injector at a 60 bar and 900 K condition.


Fuel ◽  
2021 ◽  
Vol 301 ◽  
pp. 120994
Author(s):  
Qiyan Zhou ◽  
Tommaso Lucchini ◽  
Gianluca D’Errico ◽  
Ricardo Novella ◽  
Jose María García-Oliver ◽  
...  

2021 ◽  
Author(s):  
Hyun Jo ◽  
Yuta Kawai ◽  
Naoto Horibe ◽  
Jun Hayashi ◽  
Hiroshi Kawanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document