High Temperature Lift Heat Pump Refrigerant and Thermodynamic Cycle Selection

1994 ◽  
Author(s):  
Jeffrey H. Goldman ◽  
Thomas Lovell ◽  
Michael K. Ewert ◽  
Patricia A. Petete
2020 ◽  
pp. 146808742096933
Author(s):  
Xiangyu Meng ◽  
Sicheng Liu ◽  
Jingchen Cui ◽  
Jiangping Tian ◽  
Wuqiang Long ◽  
...  

A novel method called high-pressure air (HPA) jet controlled compression ignition (JCCI) based on the compound thermodynamic cycle was investigated in this work. The combustion process of premixed mixture can be controlled flexibly by the high-pressure air jet compression, and it characterizes the intensified low-temperature reaction and two-stage high-temperature reaction. The three-dimensional (3D) computational fluid dynamics (CFD) numerical simulation was employed to study the emission formation process and mechanism, and the effects of high-pressure air jet temperature and duration on emissions were also investigated. The simulation results showed that the NOx formation is mainly affected by the first-stage high-temperature reaction due to the higher reaction temperature. Overall, this combustion mode can obtain ultra-low NOx emission. The second-stage high-temperature reaction plays an important role in the CO and THC formation caused by the mixing effect of the high-pressure air and original in-cylinder mixture. The increasing air jet temperature leads to a larger high-temperature in-cylinder region and more fuel in the first-stage reaction, and therefore resulting in higher NOx emission. However, the increasing air jet temperature can significantly reduce the CO and THC emissions. For the air jet duration comparisons, both too short and too long air jet durations could induce higher NOx emission. A higher air jet duration would result in higher CO emission due to the more high-pressure air jet with relatively low temperature.


2012 ◽  
Vol 550-553 ◽  
pp. 3219-3223
Author(s):  
Xing Wang Zhu ◽  
Chun Xia Hu ◽  
Zhi Min Guo ◽  
Yu Gui Su

In this paper,a high temperature heat-pump dryer and a corresponding semi-enclosed test drying room for using the dryer are built up respectively. While the average dry bulb of the external environment is 25°C and the relative humidity is 55%, the performance of the dryer is obtained when the dryer is running continuously for five hours. The results show that: the electromagnetic valve-capillary institution has an obvious effect on the lower the dryer exhaust temperature. It makes the suction temperature of compressor dropped 10 °C~15 °C, which can reduce the exhaust temperature and prevent compressor’s overheating. When the exhaust temperature keep at 100~110 °C, it can not only guarantee the temperature of wind coming from the dryer is high, but also can make sure the drying system’s long-term stable operation.


2017 ◽  
Vol 127 ◽  
pp. 1461-1468 ◽  
Author(s):  
Yan Zhang ◽  
Yufeng Zhang ◽  
Xiaohui Yu ◽  
Jing Guo ◽  
Na Deng ◽  
...  

2019 ◽  
Vol 33 (2) ◽  
pp. 472-482 ◽  
Author(s):  
S. Maalouf ◽  
A. Isikveren ◽  
P. Dumoulin ◽  
N. Tauveron ◽  
N. Cotereau

2020 ◽  
Vol 32 (12) ◽  
pp. 4259
Author(s):  
Win-Jet Luo ◽  
Jin-Chang Lai ◽  
Ming-Chu Hsieh ◽  
I-Hsing Huang

Sign in / Sign up

Export Citation Format

Share Document