Direct Injection in Two-Stroke Spark-Ignition Engines: Some Proposals and Researches

1996 ◽  
Author(s):  
C. M. Bartolini ◽  
F. Caresana ◽  
G. Vincenzi
Author(s):  
Nicolas Iafrate ◽  
Anthony Robert ◽  
Jean-Baptiste Michel ◽  
Olivier Colin ◽  
Benedicte Cuenot ◽  
...  

Downsized spark ignition engines coupled with a direct injection strategy are more and more attractive for car manufacturers in order to reduce pollutant emissions and increase efficiency. However, the combustion process may be affected by local heterogeneities caused by the interaction between the spray and turbulence. The aim for car manufacturers of such engine strategy is to create, for mid-to-high speeds and mid-up-high loads, a mixture which is as homogeneous as possible. However, although injection occurs during the intake phase, which favors homogeneous mixing, local heterogeneities of the equivalence ratio are still observed at the ignition time. The analysis of the mixture preparation is difficult to perform experimentally because of limited optical accesses. In this context, numerical simulation, and in particular Large Eddy Simulation (LES) are complementary tools for the understanding and analysis of unsteady phenomena. The paper presents the LES study of the impact of direct injection on the mixture preparation and combustion in a spark ignition engine. Numerical simulations are validated by comparing LES results with experimental data previously obtained at IFPEN. Two main analyses are performed. The first one focuses on the fuel mixing and the second one concerns the effect of the liquid phase on the combustion process. To highlight these phenomena, simulations with and without liquid injection are performed and compared.


2016 ◽  
Vol 26 (12) ◽  
pp. 1197-1239 ◽  
Author(s):  
Christopher Price ◽  
Arash Hamzehloo ◽  
Pavlos Aleiferis ◽  
David Richardson

2017 ◽  
Vol 19 (2) ◽  
pp. 168-178 ◽  
Author(s):  
Stefan Frommater ◽  
Jens Neumann ◽  
Christian Hasse

In modern turbocharged direct-injection, spark-ignition engines, proper calibration of the engine control unit is essential to handle the increasing variability of actuators. The physically based simulation of engine processes such as mixture homogenization enables a model-based calibration of the engine control unit to identify an ideal set of actuator settings, for example, for efficient combustion with reduced exhaust emissions. In this work, a zero-dimensional phenomenological model for direct-injection, spark-ignition engines is presented that allows the equivalence ratio distribution function in the combustion chamber to be calculated and its development is tracked over time. The model considers the engine geometry, mixing time, charge motion and spray–charge interaction. Accompanying three-dimensional computational fluid dynamics, simulations are performed to obtain information on homogeneity at different operating conditions and to calibrate the model. The calibrated model matches the three-dimensional computational fluid dynamics reference both for the temporal homogeneity development and for the equivalence ratio distribution at the ignition time, respectively. When the model is validated outside the calibrated operating conditions, this shows satisfying results in terms of mixture homogeneity at the time of ignition. Additionally, only a slight modification of the calibration is shown to be required when transferring the model to a comparable engine. While the model is primarily aimed at target applications such as a direct-injection, spark-ignition soot emission model, its application to other issues, such as gaseous exhaust emissions, engine knock or cyclic fluctuations, is conceivable due to its general structure. The fast calculation enables mixture inhomogeneities to be estimated during driving cycle simulations.


2017 ◽  
Vol 18 (5-6) ◽  
pp. 606-620 ◽  
Author(s):  
Riccardo Amirante ◽  
Elia Distaso ◽  
Michele Napolitano ◽  
Paolo Tamburrano ◽  
Silvana Di Iorio ◽  
...  

Nafta-Gaz ◽  
2021 ◽  
Vol 77 (5) ◽  
pp. 340-347
Author(s):  
Zbigniew Stępień ◽  

The article describes the threat posed by deposits harmful to the proper functioning of spark ignition engines. The areas of indirect and direct injection engines where the most dangerous deposits form are indicated. The factors having significant influence on the occurrence of this unfavourable phenomenon were collected and analyzed. Consequently, a simplified classification of factors influencing the formation of harmful deposits in direct and indirect injection spark ignition engines was made. In the research part of the project, a comparative study of the tendency of gasolines of different composition and physicochemical properties to form deposits was carried out. The criterion for evaluating the detergent properties of gasolines was the tendency to form deposits on intake valves in the case of indirect injection engine and on the injector in the case of direct injection engine. For this purpose, the previously widely used test procedure CEC F-05-93 relating to deposits formed on intake valves in SI indirect injection engines and the latest test procedure CEC F-113-KC relating to the most harmful deposits formed in injectors of DISI (Direct Injection Spark Ignition) engines were used. The purpose of the comparative study conducted was to determine if there was any relatively simple, identifiable relationship between the results of gasoline detergent property evaluations obtained at engine test sites differing in test engine generations, methods of conducting the evaluations, and type of engine deposits formed. As a result, no correlations were found between the testable engine sludge tendency results obtained from tests using the CEC F-05-93 and CEC F-113-KC procedures. Therefore, knowing the evaluation of gasoline conducted according to one of the above mentioned test procedures, one cannot conclude, predict or estimate the evaluation that will be obtained according to the other test procedure. Therefore, the results obtained according to one of the procedures do not allow extrapolation and evaluation of gasoline in terms of tendency to form harmful engine deposits according to the other procedure.


Sign in / Sign up

Export Citation Format

Share Document