test engine
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 41)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 960 (1) ◽  
pp. 012012
Author(s):  
Rm Popa ◽  
AT Borborean ◽  
V Stoica ◽  
I Ionel

Abstract In this scientific report the steps for achieving the energy balance on a test engine Daewoo 1.6 liter in 4 cylinders, with 4 valves per cylinder, its power being77 kW, are presented. The engine was connected to a hydraulic brake during the tests. The energy balance was established, based on measurements applied on the stand test, focusing to determine the lost heat and to conceive a Sankey diagram, accordingly. Two sets of measurements were performed and based on them the heat losses were determined and two Sankey diagrams were depicted. The lost heat through the cooling fluid is determined by measuring the cooling water flow rate and its inlet and outlet temperature. The lost heat through the exhaust gases is determined by the difference between the enthalpy of the exhaust gases and the enthalpy of fresh air. The lost heat due to incomplete chemical combustion is determined by analyzing the composition of the exhaust gases. The measurements are centralized on a graphic user interface, supported by a NI Compact RIO platform.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012017
Author(s):  
P Magryta ◽  
K Pietrykowski

Abstract The article presents strength simulations of a mount for mounting the test engine. Mounted on a stationary test stand, this mount consists of external fixings, fixings to stabilize the engine and tubular elements as a truss. These tubular elements are pipes made of seamless black steel. The material of the truss is S235JR steel. The article examines three different versions of the mount: mount no. 1 - initial mount, mount no. 2 - mount after a modification of pipe arrangement, mount no. 3 - mount after a modification of pipe wall thickness. For each version of the mount and subsequent calculation steps, the same boundary conditions and results legend were assumed. All calculations were made in Catia v5 in the Generative Structure Analysis module. To reflect the conditions prevailing during the engine operation on the test bench, the following conditions as mount load were adopted: gravity from the engine mass as 1000 N; engine thrust as 5000 N, and engine torque as 227 Nm. First, the model was pre-calculated to check the influence of mesh size on the obtained results. 2 mm parabolic tetrahedral elements were used in a computational grid. All subsequent steps of the mount modification showed a positive effect of reducing the maximum stress values or their mitigation as dispersion over a larger area. The changes made it possible to eliminate potentially dangerous areas of stress accumulation points. The material used has a strength several times greater than the stresses occurring in the tested elements. It was found that no further modifications to the mount are required and it is possible to use the created geometry on the test stand.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012179
Author(s):  
K Udya Sri ◽  
B S N Murthy ◽  
N Mohan Rao

Abstract Petroleum is non-renewable supply of energy and also the diminution of natural fuel resources, leads to explore for various fuels for cars. The critical search for various fuels for compression ignition engines has been paying interest on fuels obtained from hydrogen and linseed oil plays a significant role in alternate fuel for C.I Engines. The aim of this research effort is to appraise the property of Linseed oil and Hydrogen as dual blend recital on a variable Compression ratio diesel engine. This really provides the discharge individualism of linseed oil amalgamated with gas and its blends with diesel and are taken up for study. Vertical, 4-stroke, water cooled VCR engine with Linseed oil blends for a extensive series of engine load conditions such as Diesel, B10, B20, B40 along with 5lpm, 10lpm and 15lpm of hydrogen were performed. The brake thermal competence of B20 is found nearly closer to diesel fuel with minimum vibrations and less emissions of CO, hydro carbons HC and slight increase in NOx when compared to fossil fuels. During the experiments, vibrations, performance uniqueness of the test engine was analysed and compared with the precise VCR diesel vibrations, fuel performance. The results obtained by using Python module and the best suited code is derived and found that the combined increase of compression ratio and injecting timing increases the brake thermal efficiency and reduces specific fuel consumption. This module helps and reduces each load variations and performances compared tp experimental. Diesel (25%) saved, will greatly meet the demand of fuel in automobiles.


2021 ◽  
Author(s):  
YiFan Wang ◽  
ChenYu Wang ◽  
Chongyun Zhou ◽  
Rongjuan Guo ◽  
Jialin Wang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sotya Anggroro

Technological progress is evidenced by the creation of sophisticated equipment made to simplify human life. One of the advanced equipment continuously developed is an uncrewed aircraft called the Unmanned Aerial Vehicle (UAV). This study used an Unmanned Aerial Vehicle (UAV) Super Heavy aircraft with a two-stroke engine type OS 4.6 LA where the two-stroke engine requires fuel which can also lubricate the piston while operating. The purpose of this research is to make an alternative fuel with a mixture of methanol and castor oil where castor oil has flammable properties like fuel in general but can provide better lubrication. In this research, an analysis of the mixture of methanol and castor oil will be carried out on engine performance and fuel consumption of an Unmanned Aerial Vehicle (UAV) aircraft with an engine type OS 4.6 LA. This research aims to compare methanol and castor oil with a ratio of 3:1 and 4:1, then test engine performance and fuel consumption. The results confirm that a 4: 1 mixture is the best performer with a stationary rotation of 4184 rpm, an idle rotation of 7344 rpm, and an acceleration rotation or the highest rotation of 12649 rpm. Then the fuel efficiency in the idle position with a flight time of 9.00 minutes consumes 100 ml of fuel, or in other words, the fuel consumption is 11.11 ml/minute.


The exhaust gas spouting from the exhaust manifold into the radial inflow turbine coupled to an exhaust pipe of a 2.5L petrol engine has been computationally simulated in order to ascertain the extent of exhaust energy recoverability for driving the vehicle auxiliaries, using Autodesk CFD. In order to determine the amount of power available at the turbine shaft at varying engine speeds, properties of the flow and fluid spouting into the turbine from the engine and out of the turbine from the volute outlet were examined by applying the SST k-? turbulence model and advanced Petrov-Galerkin's advection scheme. For the test engine used with the operating range of 2000-6000rpm, at engine speeds up to 3000rpm, the available power was about 0.3kW. At 4000rpm, about 2.8kW of power is available at the turbine shaft, increasing to 7.7kW at 5000rpm and 43.6kW at 6000rpm. Curve-fitting shows that at 5500rpm, as much as 15kW reversible power can be extracted from a shaft coupled to the turbocharger turbine. With an electrically-assisted turbine component of the turbocharger used, the compressor of vapour compression refrigeration system of the vehicle will be efficiently driven at all engine speeds while exhaust energy recovery is achieved.


2021 ◽  
Author(s):  
BASIL OLUFEMI AKINNULI ◽  
OLADELE AWOPETU ◽  
OLUWASEUN OLUWAGBEMIGA OJO

Abstract The crankshaft and engine block of automobile wear or fail after certain years of usage. The cause of failure is a contributing factor to the power loss of the engine. Power loss reduces the performance of the vehicle. Due to the economic situation in Nigeria, the cost of buying new engines is usually high and some used engines have problems that are latent. Pre-test engine analysis was carried out and torque of each selected engine was measured with a dynamometer to know the speed of the worn engine. Disassembly of four (4) cylinder engines namely; Toyota, Nissan, Mitsubishi, and Mazda were carried out and the affected failed parts, namely; main bearing, crankpin journal, and bore cylinder diameter were determined and the level of their wear as well as power losses ascertained using measuring instruments. For easy computation and analysis, a computer software using C-sharp programming language was developed to determine the power loss and predicting machining level of refurbish-ability and tested for performance evaluation. The model and its developed software are decision support tools for any automotive industry where maintenance and management of engines for improved performance and efficiency of operation is the focus.


Author(s):  
A.E. Lomovskih ◽  
V.P. Kapustin ◽  
A.A Volokitin

Disclosed is a method of in-place repair of internal combustion engines of automobiles and special machinery on the basis of geomodificators friction, and the results of tests of internal combustion engines. Keywords repair-recovery composition; test engine; resource


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (5) ◽  
pp. 340-347
Author(s):  
Zbigniew Stępień ◽  

The article describes the threat posed by deposits harmful to the proper functioning of spark ignition engines. The areas of indirect and direct injection engines where the most dangerous deposits form are indicated. The factors having significant influence on the occurrence of this unfavourable phenomenon were collected and analyzed. Consequently, a simplified classification of factors influencing the formation of harmful deposits in direct and indirect injection spark ignition engines was made. In the research part of the project, a comparative study of the tendency of gasolines of different composition and physicochemical properties to form deposits was carried out. The criterion for evaluating the detergent properties of gasolines was the tendency to form deposits on intake valves in the case of indirect injection engine and on the injector in the case of direct injection engine. For this purpose, the previously widely used test procedure CEC F-05-93 relating to deposits formed on intake valves in SI indirect injection engines and the latest test procedure CEC F-113-KC relating to the most harmful deposits formed in injectors of DISI (Direct Injection Spark Ignition) engines were used. The purpose of the comparative study conducted was to determine if there was any relatively simple, identifiable relationship between the results of gasoline detergent property evaluations obtained at engine test sites differing in test engine generations, methods of conducting the evaluations, and type of engine deposits formed. As a result, no correlations were found between the testable engine sludge tendency results obtained from tests using the CEC F-05-93 and CEC F-113-KC procedures. Therefore, knowing the evaluation of gasoline conducted according to one of the above mentioned test procedures, one cannot conclude, predict or estimate the evaluation that will be obtained according to the other test procedure. Therefore, the results obtained according to one of the procedures do not allow extrapolation and evaluation of gasoline in terms of tendency to form harmful engine deposits according to the other procedure.


Sign in / Sign up

Export Citation Format

Share Document