Analysis of Combustion Chamber Temperature and Heat Flux in a DOHC Engine

1997 ◽  
Author(s):  
G. H. Choi ◽  
K. H. Choi ◽  
J. T. Lee ◽  
Y.S. Song ◽  
Y. Ryu ◽  
...  
Author(s):  
Arash Mohammadi ◽  
Seyed Ali Jazayeri ◽  
Masoud Ziabasharhagh

A computational fluid dynamics code is applied to simulate fluid flow and combustion in a four-stroke single cylinder engine with flat combustion chamber geometry. Heat flux and heat transfer coefficient on the cylinder head, cylinder wall, piston, intake and exhaust valves are determined. Result for a certain condition is compared for total heat transfer coefficient of the cylinder engine with available correlation proposed by experimental measurement in the literature and close agreement is observed. It is observed that the value of heat flux and heat transfer coefficient varies considerably in different positions of the combustion chamber, but the trend with crank angle is almost the same.


2018 ◽  
Vol 1114 ◽  
pp. 012005 ◽  
Author(s):  
Farida Ariani ◽  
Tulus B. Sitorus ◽  
Zulkifli Lubis ◽  
Tugiman ◽  
S Sriadhi

2013 ◽  
Vol 706-708 ◽  
pp. 1492-1495
Author(s):  
Xian Cheng Wang ◽  
Jun Biao Hu ◽  
Xing He ◽  
Meng Chao Guo

For the thermal load of a heavy vehicle is too high in plateau environment, based on Hiroyasu spray model and predictive combustion model, a turbocharged diesel engine model with environmental adaptive predictive ability was established. The experimental results of 3700m revealed that the simulation result relative errors were less than 5%. The research of combustion chamber temperature field was made. This method provides a fundamental basis for further design of the combustion chamber.


JSAE Review ◽  
2002 ◽  
Vol 23 (4) ◽  
pp. 415-421 ◽  
Author(s):  
Y YAMADA ◽  
M EMI ◽  
H ISHII ◽  
Y SUZUKI ◽  
S KIMURA ◽  
...  

Author(s):  
D J Oude Nijeweme ◽  
J. B. W. Kok ◽  
C. R. Stone ◽  
L Wyszynski

Instantaneous heat flux measurements have shown that, in the expansion stroke, heat can flow from the wall into the combustion chamber, even though the bulk gas temperature is higher than the wall temperature. This unexpected result has been explained by modelling of the unsteady flows and heat conduction within the gas side thermal boundary layer. This modelling has shown that these unsteady effects change the phasing of the heat flux, compared with that which would be predicted by a simple convective correlation based on the bulk gas properties. Twelve fast response thermocouples have been installed throughout the combustion chamber of a pent roof, four-valve, single-cylinder spark ignition engine. Instantaneous surface temperatures and the adjacent steady reference temperatures were measured, and the surface heat fluxes were calculated for motoring and firing at different speeds, throttle settings and ignition timings. To make comparisons with these measurements, the combustion system was modelled with computational fluid dynamics (CFD). This was found to give very poor agreement with the experimental measurements, so this led to a review of the assumptions used in boundary layer modelling. The discrepancies were attributed to assumptions in the law of the wall and Reynolds analogy, so instead the energy equation was solved within the boundary layer. The one-dimensional energy conservation equation has been linearized and normalized and solved in the gas side boundary layer for a motored case. The results have been used for a parametric study, and the individual terms of the energy equation are evaluated for their contribution to the surface heat flux. It was clearly shown that the cylinder pressure changes cause a phase shift of the heat flux forward in time.


Sign in / Sign up

Export Citation Format

Share Document