Conventional Super Plastic Forming and Multi-attribute Optimization through VIKOR and ANOVA

Author(s):  
A. Thirugnanam ◽  
S.P. Sundar Singh Sivam ◽  
K. Saravanan ◽  
N. Harshavardhana ◽  
D. Kumaran

Super plastic forming is a manufacturing process utilized in the automotive industry like vehicle structures to produce complex geometries of aluminium or magnesium alloy components which cannot be fabricated at room temperature. The technique has proven to be an efficient cost-worthy process in forming various lightweight components for aerospace and medical applications During the process, parameters such as die entry radius, pressure, temperature and material thickness at the sheet die interface greatly influence the metal flow and also depends on product quality. The aim of prsent work is to optimise the conventional super plastic forming process parameters for getting the better quality with proper dimensions of hemispherical cup out of AA2024 sheet. The sheet is placed in a die, which can have a simple to complex geometry depends on the final part to be produced. It is shaped into the hemispherical cup using compressed air. These input process parameters were varied and output parameters such as thickness, maximum height, diameter and minimum forming time of cup were studied and L9 Orthogonal array with a specific end goal to acquire the yield parameters influencing item quality, both VIKOR and ANOVA were assessed.

2020 ◽  
Vol 321 ◽  
pp. 04026
Author(s):  
Mohamed ACHOURI

The use of titanium in the aerospace industry has grown considerably in recent years in conjunction with the development of composite aircraft. In this way, improving titanium forming has become an important issue for the industry, both for productivity objectives and the ability to deliver basic parts according to the needs imposed by aircraft delivery rates, as well as for cost objectives. Currently, hot forming of titanium parts can be achieved through two processes: Super-plastic forming (SPF) or Hot Forming (HF). The aeronautical industry wanted to develop an innovative process for the manufacture of titanium parts by coupling the HF and SPF processes in order to exploit the advantages of these two technologies. The development of a mixed HF / SPF process will thus not only improve the rates and allow better control of the quality of the formed parts (thickness homogeneity), but also, by allowing forming at lower temperatures, this hybrid process presents a large interest at the energy plan. The study was devoted to the development of a hybrid HF/SPF process, carried out at a common temperature, allowing the “pre-forming” of the part in HF mode and the “calibration” of the part in SPF mode, while respecting a global cycle time compatible with the objectives of the aerospace industry and guaranteeing the quality expected for the final complex part. Improving the performance of the final part requires a development of numerical simulation tool of the forming process. The available simulation tool (ABAQUS/ Standard) must be adapted to define the best simulation strategy according to the simulated parts; moreover, it remains imperative to determine the input data (material behavior laws of titanium alloys) adapted to the cases to be treated (strain rate and process temperature).


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract INCONEL alloy 718SPF is an age-hardenable austenitic material whose strength is largely dependent on the precipitation of a gamma prime phase following heat treatment. The base alloy, however, possesses two-essential characteristics for super-plastic forming; grain size stability over time and temperature; and a combination of low flow stress and significant ductility. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on low and high temperature performance. Filing Code: Ni-471. Producer or source: Inco Alloys International Inc.


2017 ◽  
Vol 18 (3) ◽  
pp. 55-71
Author(s):  
Angelina Khalitovna Akhunova ◽  
Radik Rafikovich Mulyukov ◽  
Rinat Vladikovich Safiullin

2011 ◽  
Vol 130-134 ◽  
pp. 2388-2391
Author(s):  
Fang Liu ◽  
Lu Yun Zhang

In order to study the deformation characteristics of the blade rotor in the precision forming, by means of the plastic forming software DEFORM-3D, the forming process is simulated. It is concluded that (1) the change of the stress and strain in different stages was simulated during the entire forming process. (2) Based on the stress and strain distributions, the analysis of the metal flow rule and the mechanism of the filling mold was proceeded to find that the properties of the blade rotor can be enhanced by means of the precision forming.


2012 ◽  
Vol 735 ◽  
pp. 170-179
Author(s):  
Michal Mis ◽  
Richard Hall ◽  
Julian Spence ◽  
Nwabueze Emekwuru ◽  
Kevin Kibble

In most super-plastic forming (SPF) investigations the focus is usually on the material aspects. In this paper the authors develop a model to improve the heat management of SPF. The model presented improved process possibilities. The improved design involves selective application of heat to the material. Final product shape can easily be controlled by accurate temperature control of the work piece. Numerical simulation has been carried out on various components including a ‘top hat shape‘ and a heat exchanger part. Simulation comparisons are made between selective heating and conventional processing, where all of the formed material is at the same temperature, and greater process efficiency of the selective heating approach is demonstrated.


Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

In metal forming, an initially simple part—a billet or sheet blank, for example—is plastically deformed between tools (or dies) to obtain the desired final configuration. Thus, a simple part geometry is transformed into a complex one, in a process whereby the tools “store” the desired geometry and impart pressure on the deforming material through the tool-material interface. The physical phenomena constituting a forming operation are difficult to express with quantitative relationships. The metal flow, the friction at the tool-material interface, the heat generation and transfer during plastic flow, and the relationships between microstructure/properties and process conditions are difficult to predict and analyze. Often, in producing discrete parts, several forming operations (preforming) are required to transform the initial “simple” geometry into a “complex” geometry, without causing material failure or degrading material properties. Consequently, the most significant objective of any method of analysis is to assist the forming engineer in the design of forming and/or preforming sequences. For a given operation (preforming or finish-forming), such design essentially consists of (1) establishing the kinematic relationships (shape, velocities, strain-rates, strains) between the deformed and undeformed part, i.e., predicting metal flow; (2) establishing the limits of formability or producibility, i.e., determining whether it is possible to form the part without surface or internal defects; and (3) predicting the forces and stresses necessary to execute the forming operation so that tooling and equipment can be designed or selected. For the understanding and quantitative design and optimization of metal-forming operations it is useful (a) to consider a metal forming process as a system and (b) to classify these processes in a systematic way. A metal-forming system comprises all the input variables relating the billet or blank (geometry and material), the tooling (geometry and material), the conditions at the tool-material interface, the mechanics of plastic deformation, the equipment used, the characteristics of the final product, and finally the plant environment in which the process is being conducted. Such a system is illustrated in Fig. 2.1, using impression die forging as an example.


Sign in / Sign up

Export Citation Format

Share Document