On the Impact of Recent Climate Change on Seasonal Floods—A Case Study from a River Basin in Southern Quebec

Author(s):  
Norman K Jones
2018 ◽  
Vol 40 (2) ◽  
pp. 191 ◽  
Author(s):  
Guozheng Hu ◽  
Jocelyn Davies ◽  
Qingzhu Gao ◽  
Cunzhu Liang

The responses of ecosystem functions in Inner Mongolian grasslands to climate change have implications for ecosystem services and sustainable development. Research published in two previous Special Issues of The Rangeland Journal shows that recent climate change added to overgrazing and other factors caused increased degradation of Inner Mongolian rangelands whereas on the Qinghai-Tibetan Plateau, climate change tended to ameliorate the impacts of overgrazing. Recent climate change on the Mongolian Plateau involved warming with increasingly variable annual precipitation and decreased summer rainfall. Future climate projections are different, involving modest increases in precipitation and further climate warming. Research published in the current Special Issue shows that precipitation is the climate factor that has the most substantial impact on ecosystem functions in this region and is positively correlated with plant species diversity, ecosystem carbon exchange and Normalised Difference Vegetation Index. Increased flows of provisioning and regulating ecosystem services are expected with future climate change indicating that its impacts will be positive in this region. However, spatial heterogeneity in the environments and climates of Inner Mongolia highlights the risk of over-generalising from local-scale studies and indicates the value of increased attention to meta-analysis and regional scale models. The enhanced flows of ecosystem services from climate change may support sustainable development by promoting recovery of degraded grasslands with flow-on benefits for livelihoods and the regional economy. However, realising these potential benefits will depend on sound landscape management and addressing the risk of herders increasing livestock numbers to take advantage of the extra forage available. Investment in education is important to improve local capacity to adapt rangeland management to climate change, as are policies and strategies that integrate social, economic and ecological considerations and are tailored to specific regions. Gaps in understanding that could be addressed through further research on ecosystem functions include; belowground carbon exchange processes; the impact of increased variability in precipitation; and the impact of different management practices under changed climates.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chenchen Shi ◽  
Jinyan Zhan ◽  
Yongwei Yuan ◽  
Feng Wu ◽  
Zhihui Li

Ecosystem services are the benefit human populations derive directly and indirectly from the natural environment. They suffer from both the human intervention, like land use zoning change, and natural intervention, like the climate change. Under the background of climate change, regulation services of ecosystem could be strengthened under proper land use zoning policy to mitigate the climate change. In this paper, a case study was conducted in the middle reaches of the Heihe River Basin to assess the ecosystem services conservation zoning under the change of land use associated with climate variations. The research results show the spatial impact of land use zoning on ecosystem services in the study area which are significant reference for the spatial optimization of land use zoning in preserving the key ecosystem services to mitigate the climate change. The research contributes to the growing literature in finely characterizing the ecosystem services zones altered by land use change to alleviate the impact of climate change, as there is no such systematic ecosystem zoning method before.


2018 ◽  
Vol 10 (3) ◽  
pp. 861 ◽  
Author(s):  
Jihui Yuan ◽  
Kazuo Emura ◽  
Craig Farnham

Sign in / Sign up

Export Citation Format

Share Document