scholarly journals Detection of OH in an atmospheric flame at 1.5 um using optical frequency comb spectroscopy

2016 ◽  
Vol 8 (4) ◽  
pp. 110 ◽  
Author(s):  
Lucile Rutkowski ◽  
Alexandra C. Johansson ◽  
Damir Valiev ◽  
Amir Khodabakhsh ◽  
Arkadiusz Tkacz ◽  
...  

We report broadband detection of OH in a premixed CH4/air flat flame at atmospheric pressure using cavity-enhanced absorption spectroscopy based on an Er:fiber femtosecond laserand a Fourier transform spectrometer.By taking ratios of spectra measured at different heights above the burner we separate twenty OH transitions from the largely overlapping water background. Weretrieve from fits to the OH lines the relative variation of the OH concentration and flame temperature with height above the burner and compare them with 1-D simulations of the flamestructure. Full Text: PDF ReferencesG. Meijer, M. G. Boogaarts, R. T. Jongma, D. H. Parker and A. M. Wodtke, "Coherent cavity ring down spectroscopy", Chem. Phys. Lett. 217, 1, 112 (1994). CrossRef S. Cheskis, I. Derzy, V. A. Lozovsky, A. Kachanov and D. Romanini, "Cavity ring-down spectroscopy of OH radicals in low pressure flame", Appl. Phys. B 66, 3, 377 (1998). CrossRef X. Mercier, E. Therssen, J. F. Pauwels and P. Desgroux, "Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames.: A comparison with laser-induced fluorescence and direct laser absorption", Chem. Phys. Lett. 299, 1, 75 (1999). CrossRef J. Scherer, D. Voelkel and D. Rakestraw, "Infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS) in low pressure flames", Appl. Phys. B 64, 6, 699 (1997). CrossRef R. Peeters, G. Berden and G. Meijer, "Near-infrared cavity enhanced absorption spectroscopy of hot water and OH in an oven and in flames", Appl. Phys. B 73, 1, 65 (2001). CrossRef T. Aizawa, "Diode-laser wavelength-modulation absorption spectroscopy for quantitative in situ measurements of temperature and OH radical concentration in combustion gases", Appl. Opt. 40, 27, 4894 (2001). CrossRef B. Löhden, S. Kuznetsova, K. Sengstock, V. M. Baev, et al., "Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments", Appl. Phys. B 102, 2, 331 (2011). CrossRef A. Matynia, M. Idir, J. Molet, C. Roche, et al., "Absolute OH concentration profiles measurements in high pressure counterflow flames by coupling LIF, PLIF, and absorption techniques", Appl. Phys. B 108, 2, 393 (2012). CrossRef R. S. Watt, T. Laurila, C. F. Kaminski and J. Hult, "Cavity Enhanced Spectroscopy of High-Temperature H2O in the Near-Infrared Using a Supercontinuum Light Source", Appl. Spectrosc. 63, 12, 1389 (2009). CrossRef C. Abd Alrahman, A. Khodabakhsh, F. M. Schmidt, Z. Qu and A. Foltynowicz, "Cavity-enhanced optical frequency comb spectroscopy of high-temperature H2O in a flame", Opt. Express 22, 11, 13889 (2014). CrossRef A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork and J. Ye, "Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide", Appl. Phys. B 110, 2, 163 (2013). CrossRef Z. Qu, R. Ghorbani, D. Valiev and F. M. Schmidt, "Calibration-free scanned wavelength modulation spectroscopy ? application to H2O and temperature sensing in flames", Opt. Express 23, 12, 16492 (2015). CrossRef L. Rutkowski, A. Khodabakhsh, A. C. Johansson, D. M. Valiev, et al., "Measurement of H2O and OH in a Flame by Optical Frequency Comb Spectroscopy", CLEO: Science and Innovations SW4H.8 (2016). CrossRef L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, et al., "The HITRAN2012 molecular spectroscopic database", J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013). CrossRef

The Analyst ◽  
2009 ◽  
Vol 134 (11) ◽  
pp. 2220 ◽  
Author(s):  
W. Denzer ◽  
M. L. Hamilton ◽  
G. Hancock ◽  
M. Islam ◽  
C. E. Langley ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5217 ◽  
Author(s):  
Satheesh Chandran ◽  
Albert A. Ruth ◽  
Eamonn P. Martin ◽  
Justin K. Alexander ◽  
Frank H. Peters ◽  
...  

A custom-designed gain-switched frequency comb (GSFC) source was passively coupled to a medium finesse (F ≈ 522) cavity in off-axis configuration for the detection of ammonia (14NH3) in static dry air. The absorption of ammonia was detected in the near infrared spectral region between 6604 and 6607 cm−1 using a Fourier transform detection scheme. More than 30 lines of the GSFC output (free spectral range 2.5 GHz) overlapped with the strongest ro-vibrational ammonia absorption features in that spectral region. With the cavity in off-axis configuration, an NH3 detection limit of ∼3.7 ppmv in 20 s was accomplished in a laboratory environment. The experimental performance of the prototype spectrometer was characterized; advantages, drawbacks and the potential for future applications are discussed.


2016 ◽  
Vol 24 (8) ◽  
pp. 8120 ◽  
Author(s):  
Ken Kashiwagi ◽  
Takashi Kurokawa ◽  
Yasushi Okuyama ◽  
Takahiro Mori ◽  
Yosuke Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document