scholarly journals Ecological Diversity of Microbial Consortium Feces of Beef Cattle and Lignite Coal

2020 ◽  
Vol 27 (3) ◽  
pp. 180
Author(s):  
Gina Chynthia Kamarudin Puteri ◽  
Roni Ridwan ◽  
Ellin Harlia

Increasing energy demand is not alongside the availability of limited fossil fuels. Alternative and renewable energy sources are not only an option to overcome energy problems but also essential to minimize global warming. Another critical and promising renewable energy source is biomass-derived from livestock feces. Beef cattle feces contain a microorganism consortium that can be used as a starter with coal media to form biogas. Indonesia recently developed coal waste processing into renewable energy, such as biogas. This study aimed to overview the ecological diversity of microbial consortium of beef cattle feces, lignite coal waste, and a combination of livestock and lignite coal waste under mesophilic conditions. This research is an explorative method, the data obtained were analyzed descriptively. The process of formation was carried out anaerobically on a bottle containing the rumen fluid medium. The fermentation process lasted 42 days at 39℃ of temperature. After that, the sample was electrophoresis, followed by next-generation sequencing (NGS) method. NGS data is processed with the MG-Rast website. This study demonstrates the ecological diversity of microbial consortium of beef cattle, lignite coal waste, and a combined consortium. The results showed ecological diversity in the form of taxonomy dominated by bacteria, eukaryotes, and archaea.

Author(s):  
Julismi ◽  
Rusdianasari ◽  
Abu Hasan

The advancement and utilization of technology require energy, namely electricity and fuel energy. The increasing cost of fossil energy, the scarcity of non-renewable energy sources and the increasing energy demand requires diversification of energy resources. One of the new renewable energy sources currently being developed in Indonesia is Underground Coal Gasification (UCG). UCG is a new technology that utilizes unmined coal. In the UCG process, coal is burned underground and the syngas produced is collected through bore wells for processing or direct use. The resulting syngas is analyzed to see the effect of in-situ type of lignite coal and fractured type of coal on syngas production using the UCG method. Tests carried out on fracture-type lignite coal for 120 minutes with a sample weight of 1.3 kg obtained a CH4 gas concentration of 0.24%, which is relatively low compared to the in-situ type lignite coal sample CH4 gas concentration of 1.13%. The CO2 concentration was 54.46% in the fracture sample, and the In-Situ type sample was 52.19%. The O2 content with a value of 19.43% for the Fracture Type sample and 4.94% for the In-Situ type sample. Fracture Type and In-situ Lignite Coal produced fewer syngas products due to UCG testing than high-rank coals such as sub-bituminous and bituminous coal.  


IEE Review ◽  
1991 ◽  
Vol 37 (4) ◽  
pp. 152
Author(s):  
Kenneth Spring

2020 ◽  
Vol 1 (2) ◽  
pp. 189-193
Author(s):  
Aisha Naiga ◽  
Loyola Rwabose Karobwa

Over 90% of Uganda's power is generated from renewable sources. Standardised Implementation Agreements and Power Purchase Agreements create a long-term relationship between Generating Companies and the state-owned off-taker guaranteed by Government. The COVID-19 pandemic and measures to curb the spread of the virus have triggered the scrutiny and application of force majeure (FM) clauses in these agreements. This article reviews the FM clauses and considers their relevance. The authors submit that FM clauses are a useful commercial tool for achieving energy justice by ensuring the continuity of the project, despite the dire effects of the pandemic. Proposals are made for practical considerations for a post-COVID-19 future which provides the continued pursuit of policy goals of promoting renewable energy sources and increasing access to clean energy, thus accelerating just energy transitions.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
Lauren K. D’Souza ◽  
William L. Ascher ◽  
Tanja Srebotnjak

Native American reservations are among the most economically disadvantaged regions in the United States; lacking access to economic and educational opportunities that are exacerbated by “energy insecurity” due to insufficient connectivity to the electric grid and power outages. Local renewable energy sources such as wind, solar, and biomass offer energy alternatives but their implementation encounters barriers such as lack of financing, infrastructure, and expertise, as well as divergent attitudes among tribal leaders. Biomass, in particular, could be a source of stable base-load power that is abundant and scalable in many rural communities. This case study examines the feasibility of a biomass energy plant on the Cocopah reservation in southwestern Arizona. It considers feedstock availability, cost and energy content, technology options, nameplate capacity, discount and interest rates, construction, operation and maintenance (O&M) costs, and alternative investment options. This study finds that at current electricity prices and based on typical costs for fuel, O&M over 30 years, none of the tested scenarios is presently cost-effective on a net present value (NPV) basis when compared with an alternative investment yielding annual returns of 3% or higher. The technology most likely to be economically viable and suitable for remote, rural contexts—a combustion stoker—resulted in a levelized costs of energy (LCOE) ranging from US$0.056 to 0.147/kWh. The most favorable scenario is a combustion stoker with an estimated NPV of US$4,791,243. The NPV of the corresponding alternative investment is US$7,123,380. However, if the tribes were able to secure a zero-interest loan to finance the plant’s installation cost, the project would be on par with the alternative investment. Even if this were the case, the scenario still relies on some of the most optimistic assumptions for the biomass-to-power plant and excludes abatement costs for air emissions. The study thus concludes that at present small-scale, biomass-to-energy projects require a mix of favorable market and local conditions as well as appropriate policy support to make biomass energy projects a cost-competitive source of stable, alternative energy for remote rural tribal communities that can provide greater tribal sovereignty and economic opportunities.


2016 ◽  
Vol 136 (5) ◽  
pp. 459-470 ◽  
Author(s):  
Yuki Tsujii ◽  
Takao Tsuji ◽  
Tsutomu Oyama ◽  
Yoshiki Nakachi ◽  
Suresh Chand Verma

Sign in / Sign up

Export Citation Format

Share Document