scholarly journals Sobolev spaces of differential forms and de Rham-Hodge isomorphism

1981 ◽  
Vol 16 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Jozef Dodziuk
Author(s):  
Ihsane Malass ◽  
Nikolai Tarkhanov

We discuss canonical representations of the de Rham cohomology on a compact manifold with boundary. They are obtained by minimising the energy integral in a Hilbert space of differential forms that belong along with the exterior derivative to the domain of the adjoint operator. The corresponding Euler- Lagrange equations reduce to an elliptic boundary value problem on the manifold, which is usually referred to as the Neumann problem after Spencer


Author(s):  
Jonas Stelzig

AbstractWe compute the double complex of smooth complex-valued differential forms on projective bundles over and blow-ups of compact complex manifolds up to a suitable notion of quasi-isomorphism. This simultaneously yields formulas for “all” cohomologies naturally associated with this complex (in particular, de Rham, Dolbeault, Bott–Chern, and Aeppli).


2012 ◽  
Vol 263 (2) ◽  
pp. 364-382 ◽  
Author(s):  
Ralf Hiptmair ◽  
Jingzhi Li ◽  
Jun Zou

2002 ◽  
Vol 30 (11) ◽  
pp. 667-696 ◽  
Author(s):  
Luis Fernando Mejias

We use noncommutative differential forms (which were first introduced by Connes) to construct a noncommutative version of the complex of Cenkl and PorterΩ∗,∗(X)for a simplicial setX. The algebraΩ∗,∗(X)is a differential graded algebra with a filtrationΩ∗,q(X)⊂Ω∗,q+1(X), such thatΩ∗,q(X)is aℚq-module, whereℚ0=ℚ1=ℤandℚq=ℤ[1/2,…,1/q]forq>1. Then we use noncommutative versions of the Poincaré lemma and Stokes' theorem to prove the noncommutative tame de Rham theorem: ifXis a simplicial set of finite type, then for eachq≥1and anyℚq-moduleM, integration of forms induces a natural isomorphism ofℚq-modulesI:Hi(Ω∗,q(X),M)→Hi(X;M)for alli≥0. Next, we introduce a complex of noncommutative tame de Rham currentsΩ∗,∗(X)and we prove the noncommutative tame de Rham theorem for homology: ifXis a simplicial set of finite type, then for eachq≥1and anyℚq-moduleM, there is a natural isomorphism ofℚq-modulesI:Hi(X;M)→Hi(Ω∗,q(X),M)for alli≥0.


2013 ◽  
Vol 10 (04) ◽  
pp. 1320002
Author(s):  
CRISTIAN IDA

In this paper we consider a decomposition of tangentially differential forms with respect to the lifted foliation [Formula: see text] to the tangent bundle of a Lagrange space [Formula: see text] endowed with a regular foliation [Formula: see text]. First, starting from a natural decomposition of the tangential exterior derivative along the leaves of [Formula: see text], we define some vertical tangential cohomology groups of the foliated manifold [Formula: see text], we prove a Poincaré lemma for the vertical tangential derivative and we obtain a de Rham theorem for this cohomology. Next, in a classical way, we construct vertical tangential characteristic classes of tangentially smooth complex bundles over the foliated manifold [Formula: see text].


2017 ◽  
Vol 2017 ◽  
pp. 1-19
Author(s):  
G. Sardanashvily ◽  
W. Wachowski

The differential calculus, including formalism of linear differential operators and the Chevalley–Eilenberg differential calculus, overN-graded commutative rings and onN-graded manifolds is developed. This is a straightforward generalization of the conventional differential calculus over commutative rings and also is the case of the differential calculus over Grassmann algebras and onZ2-graded manifolds. We follow the notion of anN-graded manifold as a local-ringed space whose body is a smooth manifoldZ. A key point is that the graded derivation module of the structure ring of graded functions on anN-graded manifold is the structure ring of global sections of a certain smooth vector bundle over its bodyZ. Accordingly, the Chevalley–Eilenberg differential calculus on anN-graded manifold provides it with the de Rham complex of graded differential forms. This fact enables us to extend the differential calculus onN-graded manifolds to formalism of nonlinear differential operators, by analogy with that on smooth manifolds, in terms of graded jet manifolds ofN-graded bundles.


Author(s):  
Francis Brown ◽  
Clément Dupont

AbstractIn this paper, we study a single-valued integration pairing between differential forms and dual differential forms which subsumes some classical constructions in mathematics and physics. It can be interpreted as a p-adic period pairing at the infinite prime. The single-valued integration pairing is defined by transporting the action of complex conjugation from singular to de Rham cohomology via the comparison isomorphism. We show how quite general families of period integrals admit canonical single-valued versions and prove some general formulae for them. This implies an elementary “double copy” formula expressing certain singular volume integrals over the complex points of a smooth projective variety as a quadratic expression in ordinary period integrals of half the dimension. We provide several examples, including non-holomorphic modular forms, archimedean Néron–Tate heights on curves, single-valued multiple zeta values and polylogarithms. The results of the present paper are used in [F. Brown and C. Dupont, Single-valued integration and superstring amplitudes in genus zero, preprint 2019, https://arxiv.org/abs/1910.01107] to prove a recent conjecture of Stieberger which relates the coefficients in a Laurent expansion of two different kinds of periods of twisted cohomology on the moduli spaces of curves {\mathcal{M}_{0,n}} of genus zero with n marked points. We also study a morphism between certain rings of “motivic” periods, called the de Rham projection, which provides a bridge between complex periods and single-valued periods in many situations of interest.


Sign in / Sign up

Export Citation Format

Share Document