scholarly journals SYNTHESIS, CHARACTERIZATION AND ANTIBACTERIAL STUDIES OF SOME METAL COMPLEXES WITH THE SCHIFF BASE OF A HETEROCYCLIC ALDEHYDE

Author(s):  
Aurora Reiss ◽  
Theodor Căproiu ◽  
Nicolae Stănică
2010 ◽  
Vol 7 (2) ◽  
pp. 67
Author(s):  
Mohd Abdul Fatah Abdul Manan ◽  
Hadariah Bahron ◽  
Karimah Kassim ◽  
Mohd Asrul Hafaz Mohamad ◽  
Syed Nazmi Sayed Mohamad

A novel Schiff base containing nitrogen-oxygen-sulfur (NOS) donor atoms formed from the condensation reaction of S-2,4-dichlorobenzyldithiocarbazate (S-2,4BDTC) with 5-fluroisatin has been synthesized. Complexes of cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) with this Schiff base have been prepared and characterized using elemental analysis and various physico-chemical techniques. In the cobalt(II) and nickel(II) complexes the Schiff base behaves as a uninegatively charged tridentate nitrogen-oxygen-sulfur (NOS) chelating ligand, bonding through the azomethine nitrogen, thiolate sulfur and carbonylic oxygen of the isatin moiety. However, in the copper(II), zinc(II) and cadmium(II) complexes the Schiff base behaves as a nitrogen-sulfur (NS) bidentate chelating ligand, bonding through the azomethine nitrogen and thiolate sulfur. The Schiff base and the metal complexes were evaluated with respect to antimicrobial activity, which was performed in relation to two selected pathogenic microbials (Bacillus subtilis and Pseudomonas aeruginosa). It was observed that only the zinc Schiff base complex exhibited strong activity against the Bacillus subtilis bacteria with an inhibition zone of 25 mm. 


2010 ◽  
Vol 7 (2) ◽  
pp. 67
Author(s):  
Mohd Abdul Fatah Abdul Manan ◽  
Hadariah Bahron ◽  
Karimah Kassim ◽  
Mohd Asrul Hafiz Muhamad ◽  
Syed Nazmi Sayed Mohamad

A novel Schiff base containing nitrogen-oxygen-sulfur (NOS) donor atoms formed from the condensation reaction of S-2,4- dichlorobenzyldithiocarbazate (S-2.4BDTC) with 5-fluroisatin has been synthesized. Complexes of cobalt(ll), nickel(ll), copper(ll), zinc(ll) and cadmium(ll) with this Schiff base have been prepared and characterized using elemental analysis and various physico-chemical techniques. In the cobalt(ll) and nickel(II) complexes the SchifJbase behaves as a uninegatively charged tridentate nitrogen-oxygen-sulfur (NOS) chelating ligand, bonding through the azomethine nitrogen, thiolate sulfur and carbonylic oxygen of the isatin moiety. However. in the copper(ll), zinc(II) and cadmium(II) complexes the Schiff base behaves as a nitrogen-sulfur (NS) bidentate chelating ligand, bonding through the azomethine nitrogen and thiolate sulfur. The Schiff base and the metal complexes were evaluated with respect to antimicrobial activity, which was performed in reallion to two selected pathogenic microbials (Bacillus subtilis and Pseudomonas aeruginosa). It was observed that only the zinc Schiffbase complex exhibited strong activity against the Bacillus subtilis bacteria with an inhibition zone of25 mm.


2018 ◽  
Vol 69 (7) ◽  
pp. 1678-1681
Author(s):  
Amina Mumtaz ◽  
Tariq Mahmud ◽  
M. R. J. Elsegood ◽  
G. W. Weaver

New series of copper (II), cobalt (II), zinc (II), nickel (II), manganese (II), iron (II) complexes of a novel Schiff base were prepared by the condensation of sulphadizine and pyridoxal hydrochloride. The ligand and metal complexes were characterized by utilizing different instrumental procedures like microanalysis, thermogravimetric examination and spectroscopy. The integrated ligand and transition metal complexes were screened against various bacteria and fungus. The studies demonstrated the enhanced activity of metal complexes against reported microbes when compared with free ligand.


2020 ◽  
Vol 16 ◽  
Author(s):  
Meghshyam K. Patil ◽  
Vijay H. Masand ◽  
Atish K. Maldhure

: Schiff bases and their complexes are versatile compounds, which have been synthesized from the condensation of carbonyl compounds with amino compounds and exhibit a broad range of applications in biological, medicinal, catalysis, and industrial purposes. Furthermore, Schiff base-metal complexes have been used as a precursor for the synthesis of different metal oxides, which includes oxides of iron, cobalt, copper, nickel, manganese, vanadium, cadmium, zinc, mercury, etc. and ferrites such as Fe3O4, ZnFe2O4, and ZnCo2O4. These metal oxides have been utilized for several applications, which includes as a catalyst for several organic transformations and for biological activity. This review encompasses different methods of synthesis of metal oxides using Schiff base metal complexes precursor, their characterization, and various applications in detail.


2021 ◽  
Vol 1231 ◽  
pp. 129946
Author(s):  
Bushra Naureen ◽  
G.A. Miana ◽  
Khadija Shahid ◽  
Mehmood Asghar ◽  
Samreen Tanveer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document