scholarly journals A computational error estimate of the tau method for linear initial value problems

2007 ◽  
Vol 8 (2) ◽  
Author(s):  
S A Egbetade
2015 ◽  
Vol 5 (4) ◽  
pp. 301-311 ◽  
Author(s):  
Lijun Yi

AbstractThe h-p version of the continuous Petrov-Galerkin time stepping method is analyzed for nonlinear initial value problems. An L∞-error bound explicit with respect to the local discretization and regularity parameters is derived. Numerical examples are provided to illustrate the theoretical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Yong-Hong Fan ◽  
Lin-Lin Wang

We propose a new algorithm for solving the terminal value problems on a q-difference equations. Through some transformations, the terminal value problems which contain the first- and second-order delta-derivatives have been changed into the corresponding initial value problems; then with the help of the methods developed by Liu and H. Jafari, the numerical solution has been obtained and the error estimate has also been considered for the terminal value problems. Some examples are given to illustrate the accuracy of the numerical methods we proposed. By comparing the exact solution with the numerical solution, we find that the convergence speed of this numerical method is very fast.


2001 ◽  
Vol 6 (1) ◽  
pp. 9-19 ◽  
Author(s):  
A. Buikis ◽  
J. Cepitis ◽  
H. Kalis ◽  
A. Reinfelds ◽  
A. Ancitis ◽  
...  

The mathematical model of wood drying based on detailed transport phenomena considering both heat and moisture transfer have been offered in article. The adjustment of this model to the drying process of papermaking is carried out for the range of moisture content corresponding to the period of drying in which vapour movement and bound water diffusion in the web are possible. By averaging as the desired models are obtained sequence of the initial value problems for systems of two nonlinear first order ordinary differential equations. 


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 172-177
Author(s):  
Seung J. Kim ◽  
Jin Y. Cho

2020 ◽  
Vol 28 (1) ◽  
Author(s):  
O. A. Akinfenwa ◽  
R. I. Abdulganiy ◽  
B. I. Akinnukawe ◽  
S. A. Okunuga

Sign in / Sign up

Export Citation Format

Share Document