scholarly journals Stability analysis of the endemic equilibrium state of an infection age-structured HIV/AIDS disease pandemic

2016 ◽  
Vol 20 (2) ◽  
pp. 350-354
Author(s):  
T.T. Ashezua ◽  
I.J.M. Udoo ◽  
L.N. Ikpakyegh

In this work we present an infection-age-structured mathematical model of AIDS disease dynamics and examine the endemic equilibrium state for stability. An explicit formula for the basic reproduction number R0 was obtained in terms of the demographic and epidemiological parameters of the model. The endemic equilibrium state was found to be locally asymptotically stable under certain conditions. Furthermore, by constructing a suitable Lyapunov functional, the endemic equilibrium state was found to be globally asymptotically stable under certain conditions prescribed on the model parameters.Keywords: Basic reproduction number, HIV/AIDS, Lyapunov functional

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850069 ◽  
Author(s):  
Xia Wang ◽  
Ying Zhang ◽  
Xinyu Song

In this paper, a susceptible-vaccinated-exposed-infectious-recovered epidemic model with waning immunity and continuous age structures in vaccinated, exposed and infectious classes has been formulated. By using the Fluctuation lemma and the approach of Lyapunov functionals, we establish a threshold dynamics completely determined by the basic reproduction number. When the basic reproduction number is less than one, the disease-free steady state is globally asymptotically stable, and otherwise the endemic steady state is globally asymptotically stable.


CAUCHY ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 122-132
Author(s):  
Joko Harianto ◽  
Inda Puspita Sari

Discussion of local stability analysis of SVIR models in this article is included in the scope of applied mathematics. The purpose of this discussion was to provide results of local stability analysis that had not been discussed in some articles related to the SVIR model. The SVIR models discussed in this article involve logistics growth in the vaccinated compartment. The results obtained, i.e. if the basic reproduction number less than one and m is positive, then there is one equilibrium point i.e. E0 is locally asymptotically stable. In the field of epidemiology, this means that the disease will disappear from the population. However, if the basic reproduction number more than one and b1 more than b, then there are two equilibrium points i.e. disease-free equilibrium point denoted by E0 and the endemic equilibrium point denoted by E1*. In this case the endemic equilibrium point E1* is locally asymptotically stable. In the field of epidemiology, this means that the disease will remain in the population. The numerical simulation supports these results.


2020 ◽  
Vol 28 (04) ◽  
pp. 927-944
Author(s):  
HUIJUAN LIU ◽  
FEI XU ◽  
JIA-FANG ZHANG

In this work, we construct an age-structured HIV-1 infection model to investigate the interplay between [Formula: see text] cells and viruses. In our model, we assume that the variations in the death rate of productively infected [Formula: see text] cells and the production rate of virus in infected cells are all age-dependent, and the target cells follow logistic growth. We perform mathematical analysis and prove the persistence of the semi-flow of the system. We calculate the basic reproduction number and prove the local and global stability of the steady states. We show that if the basic reproduction number is less than one, the disease-free equilibrium is globally asymptotically stable, and if the basic reproduction number is greater than one, the infected steady state is locally asymptotically stable.


Author(s):  
Soufiane Bentout ◽  
Salih Djilali ◽  
Abdenasser Chekroun

We consider in this research an age-structured alcoholism model. The global behavior of the model is investigated. It is proved that the system has a threshold dynamics in terms of the basic reproduction number (BRN), where we obtained that alcohol-free equilibrium (AFE) is globally asymptotically stable (GAS) in the case [Formula: see text], but for [Formula: see text] we found that the system persists and the nontrivial equilibrium (EE) is GAS. Furthermore, the effects of the susceptible drinkers rate and the repulse rate of the recovers to alcoholics are investigated, which allow us to provide a proper strategy for reducing the spread of alcohol use in the studied populations. The obtained mathematical results are tested numerically next to its biological relevance.


2010 ◽  
Vol 03 (03) ◽  
pp. 299-312 ◽  
Author(s):  
SHU-MIN GUO ◽  
XUE-ZHI LI ◽  
XIN-YU SONG

In this paper, an age-structured SEIS epidemic model with infectivity in incubative period is formulated and studied. The explicit expression of the basic reproduction number R0 is obtained. It is shown that the disease-free equilibrium is globally asymptotically stable if R0 < 1, at least one endemic equilibrium exists if R0 > 1. The stability conditions of endemic equilibrium are also given.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
F. Talay Akyildiz ◽  
Fehaid Salem Alshammari

AbstractThis paper investigates a new model on coronavirus-19 disease (COVID-19), that is complex fractional SIR epidemic model with a nonstandard nonlinear incidence rate and a recovery, where derivative operator with Mittag-Leffler kernel in the Caputo sense (ABC). The model has two equilibrium points when the basic reproduction number $R_{0} > 1$ R 0 > 1 ; a disease-free equilibrium $E_{0}$ E 0 and a disease endemic equilibrium $E_{1}$ E 1 . The disease-free equilibrium stage is locally and globally asymptotically stable when the basic reproduction number $R_{0} <1$ R 0 < 1 , we show that the endemic equilibrium state is locally asymptotically stable if $R_{0} > 1$ R 0 > 1 . We also prove the existence and uniqueness of the solution for the Atangana–Baleanu SIR model by using a fixed-point method. Since the Atangana–Baleanu fractional derivative gives better precise results to the derivative with exponential kernel because of having fractional order, hence, it is a generalized form of the derivative with exponential kernel. The numerical simulations are explored for various values of the fractional order. Finally, the effect of the ABC fractional-order derivative on suspected and infected individuals carefully is examined and compared with the real data.


2016 ◽  
Vol 09 (05) ◽  
pp. 1650068 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Yasir Khan ◽  
Sehra Khan ◽  
Saeed Islam

This study considers SEIVR epidemic model with generalized nonlinear saturated incidence rate in the host population horizontally to estimate local and global equilibriums. By using the Routh–Hurwitz criteria, it is shown that if the basic reproduction number [Formula: see text], the disease-free equilibrium is locally asymptotically stable. When the basic reproduction number exceeds the unity, then the endemic equilibrium exists and is stable locally asymptotically. The system is globally asymptotically stable about the disease-free equilibrium if [Formula: see text]. The geometric approach is used to present the global stability of the endemic equilibrium. For [Formula: see text], the endemic equilibrium is stable globally asymptotically. Finally, the numerical results are presented to justify the mathematical results.


2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Joko Harianto

This article discusses modifications to the SEIL model that involve logistical growth. This model is used to describe the dynamics of the spread of tuberculosis disease in the population. The existence of the model's equilibrium points and its local stability depends on the basic reproduction number. If the basic reproduction number is less than unity, then there is one equilibrium point that is locally asymptotically stable. The equilibrium point is a disease-free equilibrium point. If the basic reproduction number ranges from one to three, then there are two equilibrium points. The two equilibrium points are disease-free equilibrium and endemic equilibrium points. Furthermore, for this case, the endemic equilibrium point is locally asymptotically stable.


Author(s):  
Necibe Tuncer ◽  
Sunil Giri

In this paper we the study of dynamics of time since infection structured vector born model with the direct transmission. We use standard incidence term to model the new infections. We analyze the corresponding system of partial di erential equation and obtain an explicit formula for the basic reproduction number R0. The diseases-free equilibrium is locally and globally asymptotically stable whenever the basic reproduction number is less than one, R0 < 1. Endemic equilibrium exists and is locally asymptotically stable when R0 > 1. The disease will persist at the endemic equilibrium whenever the basic reproduction number is greater than one.


Sign in / Sign up

Export Citation Format

Share Document