Real-Time PCR Quantification of Vibrio parahaemolyticus in Oysters Using an Alternative Matrix

2004 ◽  
Vol 67 (11) ◽  
pp. 2424-2429 ◽  
Author(s):  
G. E. KAUFMAN ◽  
G. M. BLACKSTONE ◽  
M. C. L. VICKERY ◽  
A. K. BEJ ◽  
J. BOWERS ◽  
...  

This study examined the relationship between levels of total Vibrio parahaemolyticus found in oyster tissues and mantle fluid with the goal of using mantle fluid as a template matrix in a new quantitative real-time PCR assay targeting the thermolabile hemolysin (tlh) gene for the enumeration of total V. parahaemolyticus in oysters. Oysters were collected near Mobile Bay, Ala., in June, July, and September and tested immediately after collection and storage at 26°C for 24 h. Initial experiments using DNA colony hybridization targeting tlh demonstrated that natural V. parahaemolyticus levels in the mantle fluid of individual oysters were strongly correlated (r = 0.85, P < 0.05) with the levels found in their tissues. When known quantities of cultured V. parahaemolyticus cells were added to real-time PCR reactions that contained mantle fluid and oyster tissue matrices separately pooled from multiple oysters, a strong linear correlation was observed between the real-time PCR cycle threshold and the log concentration of cells inoculated into each PCR reaction (mantle fluid: r = 0.98, P < 0.05; and oyster: r = 0.99, P < 0.05). However, the mantle fluid exhibited less inhibition of the PCR amplification than the homogenized oyster tissue. Analysis of natural V. parahaemolyticus populations in mantle fluids using both colony hybridization and real-time PCR demonstrated a significant (P < 0.05) but reduced correlation (r =−0.48) between the two methods. Reductions in the efficiency of the real-time PCR that resulted from low population densities of V. parahaemolyticus and PCR inhibitors present in the mantle fluid of some oysters (with significant oyster-to-oyster variation) contributed to the reduction in correlation between the methods that was observed when testing natural V. parahaemolyticus populations. The V. parahaemolyticus–specific real-time PCR assay used for this study could estimate elevated V. parahaemolyticus levels in oyster mantle fluid within 1 h from sampling time.

2007 ◽  
Vol 73 (18) ◽  
pp. 5840-5847 ◽  
Author(s):  
Jessica L. Nordstrom ◽  
Michael C. L. Vickery ◽  
George M. Blackstone ◽  
Shelley L. Murray ◽  
Angelo DePaola

ABSTRACT Vibrio parahaemolyticus is an estuarine bacterium that is the leading cause of shellfish-associated cases of bacterial gastroenteritis in the United States. Our laboratory developed a real-time multiplex PCR assay for the simultaneous detection of the thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and thermostable-related hemolysin (trh) genes of V. parahaemolyticus. The tlh gene is a species-specific marker, while the tdh and trh genes are pathogenicity markers. An internal amplification control (IAC) was incorporated to ensure PCR integrity and eliminate false-negative reporting. The assay was tested for specificity against >150 strains representing eight bacterial species. Only V. parahaemolyticus strains possessing the appropriate target genes generated a fluorescent signal, except for a late tdh signal generated by three strains of V. hollisae. The multiplex assay detected <10 CFU/reaction of pathogenic V. parahaemolyticus in the presence of >104 CFU/reaction of total V. parahaemolyticus bacteria. The real-time PCR assay was utilized with a most-probable-number format, and its results were compared to standard V. parahaemolyticus isolation methodology during an environmental survey of Alaskan oysters. The IAC was occasionally inhibited by the oyster matrix, and this usually corresponded to negative results for V. parahaemolyticus targets. V. parahaemolyticus tlh, tdh, and trh were detected in 44, 44, and 52% of the oyster samples, respectively. V. parahaemolyticus was isolated from 33% of the samples, and tdh + and trh + strains were isolated from 19 and 26%, respectively. These results demonstrate the utility of the real-time PCR assay in environmental surveys and its possible application to outbreak investigations for the detection of total and pathogenic V. parahaemolyticus.


2004 ◽  
Vol 70 (1) ◽  
pp. 498-507 ◽  
Author(s):  
Gitika Panicker ◽  
Michael L. Myers ◽  
Asim K. Bej

ABSTRACT In this paper we describe optimization of SYBR Green I-based real-time PCR parameters and testing of a large number of microbial species with vvh-specific oligonucleotide primers to establish a rapid, specific, and sensitive method for detection of Vibrio vulnificus in oyster tissue homogenate and Gulf of Mexico water (gulf water). Selected oligonucleotide primers for the vvh gene were tested for PCR amplification of a 205-bp DNA fragment with a melting temperature of approximately 87°C for 84 clinical and environmental strains of V. vulnificus. No amplification was observed with other vibrios or nonvibrio strains with these primers. The minimum level of detection by the real-time PCR method was 1 pg of purified genomic DNA or 102 V. vulnificus cells in 1 g of unenriched oyster tissue homogenate or 10 ml of gulf water. It was possible to improve the level of detection to one V. vulnificus cell in samples that were enriched for 5 h. The standard curves prepared from the real-time PCR cycle threshold values revealed that there was a strong correlation between the number of cells in unenriched samples and the number of cells in enriched samples. Detection of a single cell of V. vulnificus in 1 g of enriched oyster tissue homogenate is in compliance with the recent Interstate Shellfish Sanitation Conference guidelines. The entire detection method, including sample processing, enrichment, and real-time PCR amplification, was completed within 8 h, making it a rapid single-day assay. Rapid and sensitive detection of V. vulnificus would ensure a steady supply of postharvest treated oysters to consumers, which should help decrease the number of illnesses or outbreaks caused by this pathogen.


2012 ◽  
Vol 75 (4) ◽  
pp. 743-747 ◽  
Author(s):  
BWALYA LUNGU ◽  
W. DOUGLAS WALTMAN ◽  
ROY D. BERGHAUS ◽  
CHARLES L. HOFACRE

Conventional culture methods have traditionally been considered the “gold standard” for the isolation and identification of foodborne bacterial pathogens. However, culture methods are labor-intensive and time-consuming. A Salmonella enterica serotype Enteritidis–specific real-time PCR assay that recently received interim approval by the National Poultry Improvement Plan for the detection of Salmonella Enteritidis was evaluated against a culture method that had also received interim National Poultry Improvement Plan approval for the analysis of environmental samples from integrated poultry houses. The method was validated with 422 field samples collected by either the boot sock or drag swab method. The samples were cultured by selective enrichment in tetrathionate broth followed by transfer onto a modified semisolid Rappaport-Vassiliadis medium and then plating onto brilliant green with novobiocin and xylose lysine brilliant Tergitol 4 plates. One-milliliter aliquots of the selective enrichment broths from each sample were collected for DNA extraction by the commercial PrepSEQ nucleic acid extraction assay and analysis by the Salmonella Enteritidis–specific real-time PCR assay. The real-time PCR assay detected no significant differences between the boot sock and drag swab samples. In contrast, the culture method detected a significantly higher number of positive samples from boot socks. The diagnostic sensitivity of the real-time PCR assay for the field samples was significantly higher than that of the culture method. The kappa value obtained was 0.46, indicating moderate agreement between the real-time PCR assay and the culture method. In addition, the real-time PCR method had a turnaround time of 2 days compared with 4 to 8 days for the culture method. The higher sensitivity as well as the reduction in time and labor makes this real-time PCR assay an excellent alternative to conventional culture methods for diagnostic purposes, surveillance, and research studies to improve food safety.


2007 ◽  
Vol 70 (5) ◽  
pp. 1080-1087 ◽  
Author(s):  
V. M. BOHAYCHUK ◽  
G. E. GENSLER ◽  
M. E. McFALL ◽  
R. K. KING ◽  
D. G. RENTER

Conventional culture methods have traditionally been considered the “gold standards” for the isolation and identification of foodborne pathogens. However, culture methods are labor-intensive and time-consuming. We have developed a real-time PCR assay for the detection of Salmonella in a variety of food and food-animal matrices. The real-time PCR assay incorporates both primers and hybridization probes based on the sequence of the Salmonella invA gene and uses fluorescent resonance energy transfer technology to ensure highly sensitive and specific results. This method correctly classified 51 laboratory isolates of Salmonella and 28 non-Salmonella strains. The method was also validated with a large number of field samples that consisted of porcine feces and cecal contents, pork carcasses, bovine feces and beef carcasses, poultry cecal contents and carcasses, equine feces, animal feeds, and various food products. The samples (3,388) were preenriched in buffered peptone water and then selectively enriched in tetrathionate and Rappaport-Vassiliadis broths. Aliquots of the selective enrichment broths were combined for DNA extraction and analysis by the real-time PCR assay. When compared with the culture method, the diagnostic sensitivity of the PCR assay for the various matrices ranged from 97.1 to 100.0%, and the diagnostic specificity ranged from 91.3 to 100.0%. Kappa values ranged from 0.87 to 1.00, indicating excellent agreement of the real-time PCR assay to the culture method. The reduction in time and labor makes this highly sensitive and specific real-time PCR assay an excellent alternative to conventional culture methods for surveillance and research studies to improve food safety.


2016 ◽  
Vol 17 (1) ◽  
pp. 1-5 ◽  
Author(s):  
S. J. Anderson ◽  
H. E. Simmons ◽  
R. D. French-Monar ◽  
G. P. Munkvold

A real-time PCR assay was used to compare seedling infection by Sphacelotheca reiliana, the causal agent of head smut, among five inbred genotypes representing low, moderate, and high susceptibility to the disease. Seeds were coated with teliospores and planted in autoclaved field soil in a growth chamber. Incidence of seedling infection at growth stage V3 differed between an inbred genotype of low susceptibility and those of moderate and high susceptibility, but did not differ between the high and moderately susceptible groups (P < 0.05). The real-time PCR assay was also used to compare infection status at early and late vegetative stages with observable symptoms in the field. We detected infection via real-time PCR in maize at both growth stages during field trials conducted in Texas and California but observed no disease symptoms (smutted ears or tassels). Notably, the fungus was present in up to 31% of the ear shoots in plots without disease symptoms. The real-time assay can be a useful tool for screening seedling-stage host resistance, and for better understanding the progress of infection in different maize genotypes. The field data suggest that asymptomatic infection is much more common than previously thought, and may have important implications for the epidemiology of this fungus under diverse plant resistance and growing conditions. Accepted for publication 11 December 2015. Published 5 January 2016.


2006 ◽  
Vol 72 (3) ◽  
pp. 2031-2042 ◽  
Author(s):  
Linda N. Ward ◽  
Asim K. Bej

ABSTRACT We developed a multiplexed real-time PCR assay using four sets of gene-specific oligonucleotide primers and four TaqMan probes labeled with four different fluorophores in a single reaction for detection of total and pathogenic Vibrio parahaemolyticus, including the pandemic O3:K6 serotype in oysters. V. parahaemolyticus has been associated with outbreaks of food-borne gastroenteritis caused by the consumption of raw or undercooked seafood and therefore is a concern to the seafood industry and consumers. We selected specific primers and probes targeting the thermostable direct hemolysin gene (tdh) and tdh-related hemolysin gene (trh) that have been reported to be associated with pathogenesis in this organism. In addition, we targeted open reading frame 8 of phage f237 (ORF8), which is associated with a newly emerged virulent pandemic serotype of V. parahameolyticus O3:K6. Total V. parahaemolyticus was targeted using the thermolabile hemolysin gene (tlh). The sensitivity of the combined four-locus multiplexed TaqMan PCR was found to be 200 pg of purified genomic DNA and 104 CFU per ml for pure cultures. Detection of an initial inoculum of 1 CFU V. parahaemolyticus per g of oyster tissue homogenate was possible after overnight enrichment, which resulted in a concentration of 3.3 × 109 CFU per ml. Use of this method with natural oysters resulted in 17/33 samples that were positive for tlh and 4/33 samples that were positive for tdh. This assay specifically and sensitively detected total and pathogenic V. parahaemolyticus and is expected to provide a rapid and reliable alternative to conventional detection methods by reducing the analysis time and obviating the need for multiple assays.


2006 ◽  
Vol 69 (3) ◽  
pp. 639-643 ◽  
Author(s):  
K. H. SEO ◽  
I. E. VALENTIN-BON ◽  
R. E. BRACKETT

Salmonellosis caused by Salmonella Enteritidis (SE) is a significant cause of foodborne illnesses in the United States. Consumption of undercooked eggs and egg-containing products has been the primary risk factor for the disease. The importance of the bacterial enumeration technique has been enormously stressed because of the quantitative risk analysis of SE in shell eggs. Traditional enumeration methods mainly depend on slow and tedious most-probable-number (MPN) methods. Therefore, specific, sensitive, and rapid methods for SE quantitation are needed to collect sufficient data for risk assessment and food safety policy development. We previously developed a real-time quantitative PCR assay for the direct detection and enumeration of SE and, in this study, applied it to naturally contaminated ice cream samples with and without enrichment. The detection limit of the real-time PCR assay was determined with artificially inoculated ice cream. When applied to the direct detection and quantification of SE in ice cream, the real-time PCR assay was as sensitive as the conventional plate count method in frequency of detection. However, populations of SE derived from real-time quantitative PCR were approximately 1 log higher than provided by MPN and CFU values obtained by conventional culture methods. The detection and enumeration of SE in naturally contaminated ice cream can be completed in 3 h by this real-time PCR method, whereas the cultural enrichment method requires 5 to 7 days. A commercial immunoassay for the specific detection of SE was also included in the study. The real-time PCR assay proved to be a valuable tool that may be useful to the food industry in monitoring its processes to improve product quality and safety.


2005 ◽  
Vol 51 (5) ◽  
pp. 393-398 ◽  
Author(s):  
Sunny Jiang ◽  
Hojabr Dezfulian ◽  
Weiping Chu

Adenoviruses 40 and 41 have been recognized as important etiological agents of gastroenteritis in children. A real-time PCR method (TaqMan® assay) was developed for rapid quantification of adenovirus 40 (Ad40) by amplifying an 88 bp sequence from the hexon gene. To establish a quantification standard curve, a 1090 bp hexon region of Ad40 was amplified and cloned into the pGEM®-T Vector. A direct correlation was observed between the fluorescence threshold cycle number (Ct) and the starting quantity of Ad40 hexon gene. The quantification was linear over 6-log units and the amplification efficiency averaged greater than 95%. Seeding studies using various environmental matrices (including sterile water, creek water, brackish estuarine water, ocean water, and secondary sewage effluent) suggest that this method is applicable to environmental samples. However, real-time PCR was sensitive to inhibitors present in the environmental samples. Lower efficiency of PCR amplification was found in secondary sewage effluent and creek waters. Application of the method to fecal contaminated waters successfully quantified the presence of Ad40. The sensitivity of the real-time PCR is comparable to the traditional nested PCR assay for environmental samples. In addition, the real-time PCR assay offers the advantage of speed and insensitivity to contamination during PCR set up. The real-time PCR assay developed in this study is suitable for quantitative determination of Ad40 in environmental samples and represents a considerable advancement in pathogen quantification in aquatic environments.Key words: adenovirus, real-time PCR, environmental waters, serotype 40.


2005 ◽  
Vol 13 (3) ◽  
pp. 145-150 ◽  
Author(s):  
A. M. Caliendo ◽  
J. A. Jordan ◽  
A. M. Green ◽  
J. Ingersoll ◽  
R. J. Diclemente ◽  
...  

Objective.To compare a real-time polymerase chain reaction (PCR) assay with broth culture for the detection ofTrichomonas vaginalisusing self-collected vaginal swabs.Methods.Self-collected vaginal swabs were obtained from adolescent and young adult African-American women participating in HIV-1 prevention programs.T. vaginalisculture was performed using the InPouch TV System. Samples for the real-time PCR assay were collected using the BDProbeTec ET Culturette Direct Dry Swab system and tested in a laboratory-developed assay which targeted a repeated sequence of the genome. Discrepant samples that were culture negative and positive in the real-time PCR assay were tested in a confirmatory PCR which targeted a different region of theT. vaginalisgenome, the18S ribosomal DNA gene.Results.Of the 524 specimens tested by both culture and real-time PCR, 36 were culture positive and 54 were positive in the real-time PCR assay; 16 of the 18 discrepant specimens were also positive in the confirmatory PCR assay. Using a modified gold standard of positive by culture or positive in both PCR assays, the sensitivity of the real-time PCR assay was 100% and the specificity was 99.6%, whereas culture had a sensitivity of 69.2% and a specificity of 100%.Conclusions.The real-time PCR assay was sensitive and specific for the detection ofT. vaginalisDNA from self-collected vaginal swab specimens. The ability to use the BDProbeTec dry swab system for the real-time PCR testing allowed for the detection ofChlamydia trachomatis, Neisseria gonorrhoeae,andT. vaginalisfrom a single specimen.


2014 ◽  
Vol 28 (5-6) ◽  
pp. 246-250 ◽  
Author(s):  
Peiyan He ◽  
Zhongwen Chen ◽  
Jianyong Luo ◽  
Henghui Wang ◽  
Yong Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document