A Real-Time PCR Assay for the Detection of Salmonella in a Wide Variety of Food and Food-Animal Matrices†

2007 ◽  
Vol 70 (5) ◽  
pp. 1080-1087 ◽  
Author(s):  
V. M. BOHAYCHUK ◽  
G. E. GENSLER ◽  
M. E. McFALL ◽  
R. K. KING ◽  
D. G. RENTER

Conventional culture methods have traditionally been considered the “gold standards” for the isolation and identification of foodborne pathogens. However, culture methods are labor-intensive and time-consuming. We have developed a real-time PCR assay for the detection of Salmonella in a variety of food and food-animal matrices. The real-time PCR assay incorporates both primers and hybridization probes based on the sequence of the Salmonella invA gene and uses fluorescent resonance energy transfer technology to ensure highly sensitive and specific results. This method correctly classified 51 laboratory isolates of Salmonella and 28 non-Salmonella strains. The method was also validated with a large number of field samples that consisted of porcine feces and cecal contents, pork carcasses, bovine feces and beef carcasses, poultry cecal contents and carcasses, equine feces, animal feeds, and various food products. The samples (3,388) were preenriched in buffered peptone water and then selectively enriched in tetrathionate and Rappaport-Vassiliadis broths. Aliquots of the selective enrichment broths were combined for DNA extraction and analysis by the real-time PCR assay. When compared with the culture method, the diagnostic sensitivity of the PCR assay for the various matrices ranged from 97.1 to 100.0%, and the diagnostic specificity ranged from 91.3 to 100.0%. Kappa values ranged from 0.87 to 1.00, indicating excellent agreement of the real-time PCR assay to the culture method. The reduction in time and labor makes this highly sensitive and specific real-time PCR assay an excellent alternative to conventional culture methods for surveillance and research studies to improve food safety.

2012 ◽  
Vol 75 (4) ◽  
pp. 743-747 ◽  
Author(s):  
BWALYA LUNGU ◽  
W. DOUGLAS WALTMAN ◽  
ROY D. BERGHAUS ◽  
CHARLES L. HOFACRE

Conventional culture methods have traditionally been considered the “gold standard” for the isolation and identification of foodborne bacterial pathogens. However, culture methods are labor-intensive and time-consuming. A Salmonella enterica serotype Enteritidis–specific real-time PCR assay that recently received interim approval by the National Poultry Improvement Plan for the detection of Salmonella Enteritidis was evaluated against a culture method that had also received interim National Poultry Improvement Plan approval for the analysis of environmental samples from integrated poultry houses. The method was validated with 422 field samples collected by either the boot sock or drag swab method. The samples were cultured by selective enrichment in tetrathionate broth followed by transfer onto a modified semisolid Rappaport-Vassiliadis medium and then plating onto brilliant green with novobiocin and xylose lysine brilliant Tergitol 4 plates. One-milliliter aliquots of the selective enrichment broths from each sample were collected for DNA extraction by the commercial PrepSEQ nucleic acid extraction assay and analysis by the Salmonella Enteritidis–specific real-time PCR assay. The real-time PCR assay detected no significant differences between the boot sock and drag swab samples. In contrast, the culture method detected a significantly higher number of positive samples from boot socks. The diagnostic sensitivity of the real-time PCR assay for the field samples was significantly higher than that of the culture method. The kappa value obtained was 0.46, indicating moderate agreement between the real-time PCR assay and the culture method. In addition, the real-time PCR method had a turnaround time of 2 days compared with 4 to 8 days for the culture method. The higher sensitivity as well as the reduction in time and labor makes this real-time PCR assay an excellent alternative to conventional culture methods for diagnostic purposes, surveillance, and research studies to improve food safety.


2004 ◽  
Vol 67 (5) ◽  
pp. 864-869 ◽  
Author(s):  
K. H. SEO ◽  
I. E. VALENTIN-BON ◽  
R. E. BRACKETT ◽  
P. S. HOLT

An assay was developed for the specific detection of Salmonella Enteritidis in eggs with the use of an application of the fluorogenic 5′ nuclease assay (TaqMan). In this assay, a segment of the gene sefA specific to Salmonella group D strains such as Salmonella Enteritidis was used. The amplification of the target gene products was monitored in real-time by incorporating a fluorescent dye–labeled gene-specific probe in the PCR reaction. This method correctly detected and distinguished Salmonella Enteritidis from nearly 50 of non–group D Salmonella and other non- Salmonella strains. Detection of the sefA gene was linear for DNA extracted from approximately 102 to 109 CFU/ml in phosphate-buffered saline and 103 to 108 CFU/ml in raw egg. In two trials, when applied to detection of Salmonella Enteritidis in homogenized egg pools and compared with conventional culture methods, the newly developed PCR method yielded a 100% correlation with results obtained by a conventional culture method. However, the PCR method required only 2 days, compared to the 5 days required by the culture method. The sensitivity of this assay was approximately less than 1 CFU/600 g of egg pool. The real-time PCR assay proved to be a rapid, highly sensitive test for detection and quantification of low concentrations of Salmonella Enteritidis in egg samples.


2017 ◽  
Vol 20 (3) ◽  
pp. 477-484 ◽  
Author(s):  
M.A. Stachelska

AbstractThe aim of the present study was to establish a rapid and accurate real-time PCR method to detect pathogenic Yersinia enterocolitica in pork. Yersinia enterocolitica is considered to be a crucial zoonosis, which can provoke diseases both in humans and animals. The classical culture methods designated to detect Y. enterocolitica species in food matrices are often very time-consuming. The chromosomal locus _tag CH49_3099 gene, that appears in pathogenic Y. enterocolitica strains, was applied as DNA target for the 5’ nuclease PCR protocol. The probe was labelled at the 5’ end with the fluorescent reporter dye (FAM) and at the 3’ end with the quencher dye (TAMRA). The real-time PCR cycling parameters included 41 cycles. A Ct value which reached a value higher than 40 constituted a negative result. The developed for the needs of this study qualitative real-time PCR method appeared to give very specific and reliable results. The detection rate of locus _tag CH49_3099 - positive Y. enterocolitica in 150 pig tonsils was 85 % and 32 % with PCR and culture methods, respectively. Both the Real-time PCR results and culture method results were obtained from material that was enriched during overnight incubation. The subject of the study were also raw pork meat samples. Among 80 samples examined, 7 ones were positive when real-time PCR was applied, and 6 ones were positive when classical culture method was applied. The application of molecular techniques based on the analysis of DNA sequences such as the Real-time PCR enables to detect this pathogenic bacteria very rapidly and with higher specificity, sensitivity and reliability in comparison to classical culture methods.


2004 ◽  
Vol 53 (7) ◽  
pp. 617-622 ◽  
Author(s):  
Yoshio Iijima ◽  
Nahoko T. Asako ◽  
Masanori Aihara ◽  
Kozaburo Hayashi

A rapid laboratory system has been developed and evaluated that can simultaneously identify major diarrhoeagenic bacteria, including Salmonella enterica, Vibrio parahaemolyticus, Campylobacter jejuni and Shiga toxin-producing Escherichia coli, in stool specimens by real-time PCR. Specific identification was achieved by using selective TaqMan probes, detecting two targets in each pathogen. A positive result was scored only when both targets of a pathogen were amplified and the difference between threshold cycles for detection was less than five. Diagnosis of enteric bacterial infections using this highly sensitive method, including DNA extraction and real-time PCR, requires only 3 h. Forty stool specimens related to suspected food poisoning outbreaks were analysed: 16 (40 %) of these samples were found to be positive for diarrhoeagenic bacteria using a conventional culture method; 28 (70 %) were positive using the real-time PCR assay. Of the 12 PCR-positive but culture-negative cases, 11 patients had consumed pathogen-contaminated or high-risk food. Analysis of faecal samples from 105 outpatients who complained of diarrhoea and/or abdominal pain identified 19 (18 %) patients as being positive for diarrhoeagenic bacteria using the culture method. An additional six (6 %) patients were found to be positive by PCR analysis.


2004 ◽  
Vol 48 (2) ◽  
pp. 556-560 ◽  
Author(s):  
Stein Christian Mohn ◽  
Arve Ulvik ◽  
Roland Jureen ◽  
Rob J. L. Willems ◽  
Janetta Top ◽  
...  

ABSTRACT Rapid and accurate identification of carriers of resistant microorganisms is an important aspect of efficient infection control in hospitals. Traditional identification methods of antibiotic-resistant bacteria usually take at least 3 to 4 days after sampling. A duplex real-time PCR assay was developed for rapid detection of ampicillin-resistant Enterococcus faecium (ARE). Primers and probes that are used in this assay specifically detected the d-Ala-d-Ala ligase gene of E. faecium and the modified penicillin-binding protein 5 gene (pbp5) carrying the Glu-to-Val substitution at position 629 (Val-629) in a set of 129 tested E. faecium strains with known pbp5 sequence. Presence of the Val-629 in the strain set from 11 different countries was highly correlated with ampicillin resistance. In a screening of hospitalized patients, the real-time PCR assay yielded a sensitivity and a specificity for the detection of ARE colonization of 95% and 100%, respectively. The results were obtained 4 h after samples were harvested from overnight broth of rectal swab samples, identifying both species and the resistance marker mutation in pbp5. This novel assay reliably identifies ARE 2 to 3 days more quickly than traditional culture methods, thereby increasing laboratory throughput, making it useful for rectal screening of ARE. The assay demonstrates the advantages of real-time PCR for detection of nosocomial pathogens.


2008 ◽  
Vol 54 (9) ◽  
pp. 742-747 ◽  
Author(s):  
Shiyong Lin ◽  
Xinying Wang ◽  
Haoxuan Zheng ◽  
Zhengguo Mao ◽  
Yong Sun ◽  
...  

Our purpose was to establish a quick and accurate real-time PCR (rtPCR) method to detect Campylobacter jejuni directly from human diarrheal stool as an alternative to traditional culture methods. To determine the consistency of rtPCR and culture method, 256 clinical diarrheal stool samples and 50 normal stool samples from healthy individuals were examined, and the whole process was double-blinded. Our data showed that the sensitivity of rtPCR in pure cultures and stool was 102CFU·mL–1and 103CFU·g–1, respectively. Of the 256 diarrheal samples, 10 specimens were successfully detected by both methods, whereas two specimens were PCR positive but culture negative. No positive results were found by these two methods in 50 normal specimens. Our data suggested that rtPCR was convenient in operation and time-saving (turnaround time 3.5–4 h), so it could be used for clinical diagnostic and epidemiological purposes.


2016 ◽  
Vol 17 (1) ◽  
pp. 1-5 ◽  
Author(s):  
S. J. Anderson ◽  
H. E. Simmons ◽  
R. D. French-Monar ◽  
G. P. Munkvold

A real-time PCR assay was used to compare seedling infection by Sphacelotheca reiliana, the causal agent of head smut, among five inbred genotypes representing low, moderate, and high susceptibility to the disease. Seeds were coated with teliospores and planted in autoclaved field soil in a growth chamber. Incidence of seedling infection at growth stage V3 differed between an inbred genotype of low susceptibility and those of moderate and high susceptibility, but did not differ between the high and moderately susceptible groups (P < 0.05). The real-time PCR assay was also used to compare infection status at early and late vegetative stages with observable symptoms in the field. We detected infection via real-time PCR in maize at both growth stages during field trials conducted in Texas and California but observed no disease symptoms (smutted ears or tassels). Notably, the fungus was present in up to 31% of the ear shoots in plots without disease symptoms. The real-time assay can be a useful tool for screening seedling-stage host resistance, and for better understanding the progress of infection in different maize genotypes. The field data suggest that asymptomatic infection is much more common than previously thought, and may have important implications for the epidemiology of this fungus under diverse plant resistance and growing conditions. Accepted for publication 11 December 2015. Published 5 January 2016.


PLoS ONE ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. e0227143
Author(s):  
Angela Nagel ◽  
Emmanouela Dimitrakopoulou ◽  
Norbert Teig ◽  
Peter Kern ◽  
Thomas Lücke ◽  
...  

2004 ◽  
Vol 67 (11) ◽  
pp. 2424-2429 ◽  
Author(s):  
G. E. KAUFMAN ◽  
G. M. BLACKSTONE ◽  
M. C. L. VICKERY ◽  
A. K. BEJ ◽  
J. BOWERS ◽  
...  

This study examined the relationship between levels of total Vibrio parahaemolyticus found in oyster tissues and mantle fluid with the goal of using mantle fluid as a template matrix in a new quantitative real-time PCR assay targeting the thermolabile hemolysin (tlh) gene for the enumeration of total V. parahaemolyticus in oysters. Oysters were collected near Mobile Bay, Ala., in June, July, and September and tested immediately after collection and storage at 26°C for 24 h. Initial experiments using DNA colony hybridization targeting tlh demonstrated that natural V. parahaemolyticus levels in the mantle fluid of individual oysters were strongly correlated (r = 0.85, P &lt; 0.05) with the levels found in their tissues. When known quantities of cultured V. parahaemolyticus cells were added to real-time PCR reactions that contained mantle fluid and oyster tissue matrices separately pooled from multiple oysters, a strong linear correlation was observed between the real-time PCR cycle threshold and the log concentration of cells inoculated into each PCR reaction (mantle fluid: r = 0.98, P &lt; 0.05; and oyster: r = 0.99, P &lt; 0.05). However, the mantle fluid exhibited less inhibition of the PCR amplification than the homogenized oyster tissue. Analysis of natural V. parahaemolyticus populations in mantle fluids using both colony hybridization and real-time PCR demonstrated a significant (P &lt; 0.05) but reduced correlation (r =−0.48) between the two methods. Reductions in the efficiency of the real-time PCR that resulted from low population densities of V. parahaemolyticus and PCR inhibitors present in the mantle fluid of some oysters (with significant oyster-to-oyster variation) contributed to the reduction in correlation between the methods that was observed when testing natural V. parahaemolyticus populations. The V. parahaemolyticus–specific real-time PCR assay used for this study could estimate elevated V. parahaemolyticus levels in oyster mantle fluid within 1 h from sampling time.


Sign in / Sign up

Export Citation Format

Share Document