scholarly journals Effect of different polishing techniques on surface roughness and bacterial adhesion of three glass ionomer-based restorative materials: In vitro study

2020 ◽  
pp. e620-e625
Author(s):  
HS. Ismail
2014 ◽  
Vol 60 (5) ◽  
pp. 200-203
Author(s):  
Andreea Borş ◽  
Cristina Molnar-Varlam ◽  
Melinda Székely

Abstract Objective: The aim of this in vitro study was to evaluate the influence of erosive conditions on the wear resistance of aesthetic direct restorative materials. Methods: Six dental filling materials were tested: two composites (Filtek Z550 and X-tra fil), two compomers (Dyract Extra and Twinky Star) and two glass ionomers (Ketac Molar and Fuji II LC). Twenty disks (10mm×2mm) of each material were prepared (n=120) and kept in artificial saliva at 37˚C for 24 hours. Specimens were cycled in acidic soft drink (Coca-Cola) 5×/day, for 5’, over 30 days. Initial surface roughness ISR (Ra-μm) and final surface roughness FSR were measured using a profilometer. The wear rate was calculated as difference of final minus the initial roughness (ΔSR=FSR-ISR). For statistical analysis t-test and one-way ANOVA test were used by GraphPad Prism version 5.03 statistical software. The level of significance was set at p<0.05. Results: The erosive wear rates (mean±SD, μm) after exposure to acidic beverage were: 0.30±0.03 (Ketac Molar), 0.28±0.04 (Fuji II LC), 0.27±0.00 (Filtek Z550), 0.23±0.01 (X-tra fil), 0.20±0.00 (Twinky Star) and 0.14±0.01 Dyract Extra, respectively. There were significant differences between the tested materials (p<0.05). Conclusions: Dental filling materials had different behaviour under the same erosive condition, however all investigated aesthetic restorative materials showed surface degradation. These findings suggest that erosive wear resistance of tooth coloured restoratives could influence their longevity in intraoral acidic conditions. Acknowledgements: The study was supported by the Internal Research Grant no. 5/30.01.2013 of the University of Medicine and Pharmacy of Tirgu Mureş.


2021 ◽  
Vol 11 (6) ◽  
pp. 14389-14402

The present in vitro study aims to evaluate pre- and probiotic liquids' effect on surface roughness values of restorative materials after one month of immersion. 360 disc-shaped samples (5mm x 2mm) were prepared from two types of glass-ionomer cements (GIC), a resin-modified GIC, a compomer, three bulk-fill composites, and one microhybrid composite. After the surfaces were polished, samples were divided into three groups (n = 15) and immersed for 10 minutes daily for one month in either a probiotic sachet, kefir (prebiotic), or artificial saliva. After that, the surface roughness values were measured by a profilometer. Scanning electron microscopy (SEM) evaluations of one sample from tested materials were also added. Statistical data were analyzed using one-way ANOVA and Bonferroni–Dunn tests. One of the GIC materials had significantly rougher surfaces in the probiotic sachet, followed by the compomer (p < 0.05). The compomer showed the roughest surfaces after immersion in kefir, followed by the microhybrid composite (Z250). Probiotic sachets formed rougher surfaces than kefir among samples. SEM images revealed the inorganic filler structures and microcracks on the surfaces. A high-viscosity glass-ionomer cement, Equia Fil Forte, and other composite-based materials tested in the present study can be used in pediatric patients who use pre- and probiotic supplements.


Sign in / Sign up

Export Citation Format

Share Document