scholarly journals Vertical distribution of phytoplankton functional groups in a tropical shallow lake: driving forces on a diel scale

2011 ◽  
Vol 23 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Luciana Gomes Barbosa ◽  
Paulina Maria Maia Barbosa ◽  
Francisco Antonio Rodrigues Barbosa
2009 ◽  
Vol 69 (1) ◽  
pp. 75-85 ◽  
Author(s):  
LM. Rangel ◽  
LHS. Silva ◽  
MS. Arcifa ◽  
A. Perticarrari

Phytoplankton vertical and diel dynamics in a small shallow lake (Lake Monte Alegre, Ribeirão Preto, state of São Paulo) were investigated in two climatological periods: July 2001 (cool-dry season) and March 2002 (warm-rainy season). Monte Alegre is a eutrophic reservoir, with a warm polymictic discontinuous circulation pattern. The lake was thermally stratified in both periods, although dissolved oxygen varied less in the cool-dry period. Phytoplankton biomass was higher in the warm-rainy season and the vertical distribution was stratified in both seasons. Flagellate groups (Lm, Y, W1 and W2) and functional groups typical of shallow eutrophic environments (J, X1 and Sn) were important throughout the study period. The lake's thermal pattern strongly influenced the vertical distribution of the phytoplankton community in both periods. Biomass, functional groups and size classes of phytoplankton also were determined by the presence of more efficient herbivores in the lake, especially during the cool-dry period when phytoplankton biomass decreased.


2014 ◽  
Vol 26 (4) ◽  
pp. 356-366 ◽  
Author(s):  
Thársia da Silva Pinto ◽  
Vanessa Becker

AIM: This study analyzed - the diel and vertical dynamics of phytoplankton functional groups in a natural tropical lake (Extremoz Lake, northeast Brazil), to investigate and understand the driver factors of the community during a severe drought period. METHODS: Sampling of the abiotic variables and phytoplankton was performed at intervals of 6 hours over 24 hours in vertical profiles, in dry and rainy seasons (according to the historical average). The phytoplankton species were grouped according to the functional groups' approach sensu Reynolds et al. (2002). RESULTS: October/12 was considered as a dry period (18.4 mm), while March/13, due to the historical average, as a rainy season, due to the low rainfall during the study period (15.7 mm), it was called severe drought. The lake showed thermal and chemical destratification in both periods. Phytoplankton biomass was higher in the dry season and their vertical distribution was stratified in both periods. In both samplings there were less algal biomass during the night. Phytoplankton functional groups of mixed and shallow systems (S1, L0 and K) were descriptors throughout the study period with higher biomass always registered in the group S1, represented by Planktolyngbya limnetica (Cyanobacteria). CONCLUSION: The lack of seasonality observed in this study, due to prolonged drought, may have influenced the pattern of homogeneous behavior in both samplings. This pattern strongly influenced the vertical distribution of phytoplankton in the two periods, with a constancy of dominance of functional descriptors groups.


2018 ◽  
Vol 30 (0) ◽  
Author(s):  
Maria da Conceição de Souza ◽  
Luciane Oliveira Crossetti ◽  
Vanessa Becker

Abstract Aim Our study aimed to evaluate changes in the phytoplankton functional groups brought about by increases in temperature and nutrients predicted by the Intergovernmental Panel on Climate Change (IPCC) scenario for semi-arid regions. Methods Two experiments were performed, one in the rainy season and another in the dry season. The nutrient enrichment was based on the annual mean values (August 2012-August 2013) of soluble reactive phosphorus and nitrate verified in the reservoir. The microcosms were exposed to two different temperatures, the five-year average of air temperature in the reservoir (control) and 4°C above the control temperature (warming). The experiment was conducted over 12 days; every three days water samples of approximately 60 mL in volume were taken from the reservoir for chemical and phytoplankton analysis. All species were classified by Reynolds Functional Groups (RFG). Results The functional groups H1, X1, LO and S1 were the most representative in both seasons (rainy and dry). Our results showed that bloom-forming cyanobacteria, in particular the species of functional groups H1 and M, commonly reported in reservoirs in semi-arid regions of Brazil, were not significantly benefited by the warming and nutrient enrichment. The recruitment of other blue-green species, as well as diatoms and green algae, could be observed. Conclusions The effects of warming and/or nutritional enrichment can change the structure of the phytoplankton community. However, as not expected as the pessimist scenario, in our study the bloom-forming phytoplankton functional groups did not show changes in relative biomass. Instead, the recruitment of diatoms and green algae currently found in enriched environments was verified, specifically in the rainy period, when nutrient dilution typically occurs.


Hydrobiologia ◽  
2016 ◽  
Vol 788 (1) ◽  
pp. 169-191 ◽  
Author(s):  
Marija Gligora Udovič ◽  
Aleksandra Cvetkoska ◽  
Petar Žutinić ◽  
Sunčica Bosak ◽  
Igor Stanković ◽  
...  

2019 ◽  
Vol 31 (4) ◽  
pp. 1035-1044
Author(s):  
QIAN Kuimei ◽  
◽  
LIU Baogui ◽  
CHEN Yuwei

Sign in / Sign up

Export Citation Format

Share Document