Habitat templates of phytoplankton functional groups in tropical reservoirs as a tool to understand environmental changes

Hydrobiologia ◽  
2021 ◽  
Author(s):  
Cihelio Alves Amorim ◽  
Ariadne do Nascimento Moura
Inland Waters ◽  
2020 ◽  
pp. 1-15
Author(s):  
Leonardo de Magalhães ◽  
Luciana Machado Rangel ◽  
Adriana de Melo Rocha ◽  
Simone Jaqueline Cardoso ◽  
Lúcia Helena Sampaio da Silva

Author(s):  
Cristian Hakspiel-Segura ◽  
Betsy Paola Barrios-Galván ◽  
Gabriel Pinilla-Agudelo

Phytoplankton is a fundamental productive component of lentic ecosystems, which also directly reflects environmental variability. This study evaluated the dynamics of phytoplankton in response to the monthly variability of physicochemical properties of a neotropical high Andes reservoir, El Neusa, from July to October 2004. Samples were collected and analyzed for taxonomic identification to species or the lowest possible level and categorized in functional groups (FGs). A total of 111 species of phytoplankton belonging to nine classes and 20 FGs were recorded. Among these phytoplankton classes, Chlorophyceae (36 species), Euglenophyceae (13 species), Bacillariophyceae, (14 species), and Conjugatophyceae (25 species) were the most species-rich and highest in abundance. The overall phytoplankton abundance was largest in August (8.5×104 ±2.7 ×104 ind.L-1) and September (8.9×104 ±4.6×104 ind.L-1); however, the distribution of phytoplankton classes was not statistically different among sampling sites (Friedman-ANOVA; p>0.01)  Chlorella sp. (2.4×104 ±2.0×104 ind.L-1), and Chloromonas grovei (2.5×104 ±4.4×103 ind.L-1), belonging to functional group X1, were dominant, representing together between 54% and 78% of the average monthly abundance. Simple correlations and multivariate analysis between physicochemical variables and phytoplankton revealed that conductivity, pH, and total suspended solids had a key influence on the distribution of both dominant species and FGs. These analyses indicated that hydrological (precipitation and runoff) and water stability (stratification and mixing) conditions determined environmental changes and the selection of phytoplankton functional groups. The main features of the dominant FGs and the trophic state of El Neusa were also discussed. 


2018 ◽  
Vol 30 (0) ◽  
Author(s):  
Maria da Conceição de Souza ◽  
Luciane Oliveira Crossetti ◽  
Vanessa Becker

Abstract Aim Our study aimed to evaluate changes in the phytoplankton functional groups brought about by increases in temperature and nutrients predicted by the Intergovernmental Panel on Climate Change (IPCC) scenario for semi-arid regions. Methods Two experiments were performed, one in the rainy season and another in the dry season. The nutrient enrichment was based on the annual mean values (August 2012-August 2013) of soluble reactive phosphorus and nitrate verified in the reservoir. The microcosms were exposed to two different temperatures, the five-year average of air temperature in the reservoir (control) and 4°C above the control temperature (warming). The experiment was conducted over 12 days; every three days water samples of approximately 60 mL in volume were taken from the reservoir for chemical and phytoplankton analysis. All species were classified by Reynolds Functional Groups (RFG). Results The functional groups H1, X1, LO and S1 were the most representative in both seasons (rainy and dry). Our results showed that bloom-forming cyanobacteria, in particular the species of functional groups H1 and M, commonly reported in reservoirs in semi-arid regions of Brazil, were not significantly benefited by the warming and nutrient enrichment. The recruitment of other blue-green species, as well as diatoms and green algae, could be observed. Conclusions The effects of warming and/or nutritional enrichment can change the structure of the phytoplankton community. However, as not expected as the pessimist scenario, in our study the bloom-forming phytoplankton functional groups did not show changes in relative biomass. Instead, the recruitment of diatoms and green algae currently found in enriched environments was verified, specifically in the rainy period, when nutrient dilution typically occurs.


Hydrobiologia ◽  
2016 ◽  
Vol 788 (1) ◽  
pp. 169-191 ◽  
Author(s):  
Marija Gligora Udovič ◽  
Aleksandra Cvetkoska ◽  
Petar Žutinić ◽  
Sunčica Bosak ◽  
Igor Stanković ◽  
...  

2009 ◽  
Vol 69 (1) ◽  
pp. 75-85 ◽  
Author(s):  
LM. Rangel ◽  
LHS. Silva ◽  
MS. Arcifa ◽  
A. Perticarrari

Phytoplankton vertical and diel dynamics in a small shallow lake (Lake Monte Alegre, Ribeirão Preto, state of São Paulo) were investigated in two climatological periods: July 2001 (cool-dry season) and March 2002 (warm-rainy season). Monte Alegre is a eutrophic reservoir, with a warm polymictic discontinuous circulation pattern. The lake was thermally stratified in both periods, although dissolved oxygen varied less in the cool-dry period. Phytoplankton biomass was higher in the warm-rainy season and the vertical distribution was stratified in both seasons. Flagellate groups (Lm, Y, W1 and W2) and functional groups typical of shallow eutrophic environments (J, X1 and Sn) were important throughout the study period. The lake's thermal pattern strongly influenced the vertical distribution of the phytoplankton community in both periods. Biomass, functional groups and size classes of phytoplankton also were determined by the presence of more efficient herbivores in the lake, especially during the cool-dry period when phytoplankton biomass decreased.


2008 ◽  
Vol 5 (3) ◽  
pp. 847-864 ◽  
Author(s):  
P. W. Boyd ◽  
S. C. Doney ◽  
R. Strzepek ◽  
J. Dusenberry ◽  
K. Lindsay ◽  
...  

Abstract. Concurrent changes in ocean chemical and physical properties influence phytoplankton dynamics via alterations in carbonate chemistry, nutrient and trace metal inventories and upper ocean light environment. Using a fully coupled, global carbon-climate model (Climate System Model 1.4-carbon), we quantify anthropogenic climate change relative to the background natural interannual variability for the Southern Ocean over the period 2000 and 2100. Model results are interpreted using our understanding of the environmental control of phytoplankton growth rates – leading to two major findings. Firstly, comparison with results from phytoplankton perturbation experiments, in which environmental properties have been altered for key species (e.g., bloom formers), indicates that the predicted rates of change in oceanic properties over the next few decades are too subtle to be represented experimentally at present. Secondly, the rate of secular climate change will not exceed background natural variability, on seasonal to interannual time-scales, for at least several decades – which may not provide the prevailing conditions of change, i.e. constancy, needed for phytoplankton adaptation. Taken together, the relatively subtle environmental changes, due to climate change, may result in adaptation by resident phytoplankton, but not for several decades due to the confounding effects of climate variability. This presents major challenges for the detection and attribution of climate change effects on Southern Ocean phytoplankton. We advocate the development of multi-faceted tests/metrics that will reflect the relative plasticity of different phytoplankton functional groups and/or species to respond to changing ocean conditions.


2019 ◽  
Vol 31 (4) ◽  
pp. 1035-1044
Author(s):  
QIAN Kuimei ◽  
◽  
LIU Baogui ◽  
CHEN Yuwei

Sign in / Sign up

Export Citation Format

Share Document