scholarly journals Vertical distribution characteristics of phytoplankton functional groups and their relationships with environmental factors in Lake Basomtso, Tibet, China

2021 ◽  
Vol 33 (1) ◽  
pp. 86-101
Author(s):  
An Ruizhi ◽  
◽  
Pan Chengmei ◽  
Taba Lazhen ◽  
Yang Xinlan ◽  
...  
2009 ◽  
Vol 69 (1) ◽  
pp. 75-85 ◽  
Author(s):  
LM. Rangel ◽  
LHS. Silva ◽  
MS. Arcifa ◽  
A. Perticarrari

Phytoplankton vertical and diel dynamics in a small shallow lake (Lake Monte Alegre, Ribeirão Preto, state of São Paulo) were investigated in two climatological periods: July 2001 (cool-dry season) and March 2002 (warm-rainy season). Monte Alegre is a eutrophic reservoir, with a warm polymictic discontinuous circulation pattern. The lake was thermally stratified in both periods, although dissolved oxygen varied less in the cool-dry period. Phytoplankton biomass was higher in the warm-rainy season and the vertical distribution was stratified in both seasons. Flagellate groups (Lm, Y, W1 and W2) and functional groups typical of shallow eutrophic environments (J, X1 and Sn) were important throughout the study period. The lake's thermal pattern strongly influenced the vertical distribution of the phytoplankton community in both periods. Biomass, functional groups and size classes of phytoplankton also were determined by the presence of more efficient herbivores in the lake, especially during the cool-dry period when phytoplankton biomass decreased.


2014 ◽  
Vol 26 (4) ◽  
pp. 356-366 ◽  
Author(s):  
Thársia da Silva Pinto ◽  
Vanessa Becker

AIM: This study analyzed - the diel and vertical dynamics of phytoplankton functional groups in a natural tropical lake (Extremoz Lake, northeast Brazil), to investigate and understand the driver factors of the community during a severe drought period. METHODS: Sampling of the abiotic variables and phytoplankton was performed at intervals of 6 hours over 24 hours in vertical profiles, in dry and rainy seasons (according to the historical average). The phytoplankton species were grouped according to the functional groups' approach sensu Reynolds et al. (2002). RESULTS: October/12 was considered as a dry period (18.4 mm), while March/13, due to the historical average, as a rainy season, due to the low rainfall during the study period (15.7 mm), it was called severe drought. The lake showed thermal and chemical destratification in both periods. Phytoplankton biomass was higher in the dry season and their vertical distribution was stratified in both periods. In both samplings there were less algal biomass during the night. Phytoplankton functional groups of mixed and shallow systems (S1, L0 and K) were descriptors throughout the study period with higher biomass always registered in the group S1, represented by Planktolyngbya limnetica (Cyanobacteria). CONCLUSION: The lack of seasonality observed in this study, due to prolonged drought, may have influenced the pattern of homogeneous behavior in both samplings. This pattern strongly influenced the vertical distribution of phytoplankton in the two periods, with a constancy of dominance of functional descriptors groups.


Author(s):  
Guojia Huang ◽  
Xiaoqing Wang ◽  
Yushun Chen ◽  
Long Deng ◽  
Dajian Xu

In this study, use survival strategies of phytoplankton functional groups to environmental factors in a drinking water reservoir. Survival strategies of phytoplankton in drinking water reservoirs were rarely analysed. Dynamics and survival strategies of phytoplankton community in Zhushuqiao Reservoir (Changsha, China) were studied bimonthly from April 2016 to February 2017 to fill this gap. In spring, species of CRS-strategy that adapted to low water temperature, light, and nutrient dominated. There were small individuals of opportunistic colonists of C-strategy observed before stratification. With the increase of nutrient and water temperature in summer, slightly bigger, disturbance-tolerant species of R-strategy and species of CS-strategy that adapted to stratification dominated. In winter, some species adapted to low water temperature, which were R-strategists. Key factors driven seasonal phytoplankton succession were water temperature, total phosphorus, and dissolved inorganic nitrogen. Attention should be paid to potential threats from algal bloom species with C-strategy, and future longer-term monitoring of the system and its surrounding watersheds is greatly needed.


2011 ◽  
Vol 23 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Luciana Gomes Barbosa ◽  
Paulina Maria Maia Barbosa ◽  
Francisco Antonio Rodrigues Barbosa

2017 ◽  
Vol 29 (0) ◽  
Author(s):  
Barbara Furrigo Zanco ◽  
Alfonso Pineda ◽  
Jascieli Carla Bortolini ◽  
Susicley Jati ◽  
Luzia Cleide Rodrigues

Abstract Aim: The objective of this study was to evaluate the efficacy of phytoplankton functional groups as indicators of environmental conditions in floodplain rivers and lakes with different trophic state and connectivity degree to the Paraná River. Phytoplankton functional groups (FGs) cluster sensitive species to environmental variation and can be an alternative for environmental monitoring. Methods Samples were performed quarterly from 2010 to 2013 in the Ivinhema, Paraná and Baia Rivers and in three lakes permanently connected to each river. Results 419 taxa were identified, and those taxa that had values greater than 5% of the total biovolume were classified into FGs (P, C, A, B, MP, H1, W1, J, TD, LO, and N). The lakes presented higher biovolume and were more productive than rivers, especially in the dry periods. The rivers presented light limitation and low phytoplankton development. The FG LO was an indicator in rainy seasons. Both rivers and lakes were mostly oligotrophic. We registered FG indicators only for the lakes (A, B, C, E, LO, P, and W1) and mesotrophic environments (A, B, C, E, J, LO, and P). Conclusion The FGs reflected the seasonal variation and the trophic state of environments in the upper Paraná River floodplain, mainly in the lentic environments. The species-environment relationship (FGs as indicators) was clearer in the lakes, probably because of the longer water retention that allows evidencing the response of the phytoplankton community to environmental factors. On the other hand, the absence of FGs as indicators in the rivers could be due to the high water flow that promotes dispersal stochasticity and masks the relationship between the environmental factors and the phytoplankton community. Thus, phytoplankton FGs proved to be a viable tool to evaluate the environmental conditions in a floodplain.


2015 ◽  
Vol 35 (17) ◽  
Author(s):  
黄国佳 HUANG Guojia ◽  
李秋华 LI Qiuhua ◽  
陈椽 CHEN Chuan ◽  
商立海 SHANG Lihai ◽  
张垒 ZHANG Lei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document