Equivalent wall for frameworks; Buckling analysis of planar structures

Author(s):  
Carolyn A. Larabell ◽  
David G. Capco ◽  
G. Ian Gallicano ◽  
Robert W. McGaughey ◽  
Karsten Dierksen ◽  
...  

Mammalian eggs and embryos contain an elaborate cytoskeletal network of “sheets” which are distributed throughout the entire cell cytoplasm. Cytoskeletal sheets are long, planar structures unlike the cytoskeletal networks typical of somatic cells (actin filaments, microtubules, and intermediate filaments), which are filamentous. These sheets are not found in mammalian somatic cells nor are they found in nonmammalian eggs or embryos. Evidence that they are, indeed, cytoskeletal in nature is derived from studies demonstrating that 1) the sheets are retained in the detergent-resistant cytoskeleton fraction; 2) there are no associated membranes (determined by freeze-fracture); and 3) the sheets dissociate into filaments at the blastocyst stage of embryogenesis. Embedment-free sections of hamster eggs viewed at 60 kV show sheets running across the egg cytoplasm (Fig. 1). Although this approach provides excellent global views of the sheets and their reorganization during development, the mechanism of image formation for embedment-free sections does not permit evaluation of the sheets at high resolution.


Author(s):  
Husam Al Qablan ◽  
Hazim M. Dwairi ◽  
Omar Al Hattamleh ◽  
Samer Rabab'ah

AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 951-955
Author(s):  
Hoon Cheol Park ◽  
Chahngmin Cho ◽  
Younho Choi

2019 ◽  
Vol 6 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Subrat Kumar Jena ◽  
S. Chakraverty

AbstractIn this paper, two computationally efficient techniques viz. Differential Quadrature Method (DQM) and Differential Transformation Method (DTM) have been used for buckling analysis of Euler-Bernoulli nanobeam incorporation with the nonlocal theory of Eringen. Complete procedures of both the methods along with their mathematical formulations are discussed, and MATLAB codes have been developed for both the methods to handle the boundary conditions. Various classical boundary conditions such as SS, CS, and CC have been considered for investigation. A comparative study for the convergence of DQM and DTM approaches are carried out, and the obtained results are also illustrated to demonstrate the effects of the nonlocal parameter, aspect ratio (L/h) and the boundary condition on the critical buckling load parameter.


Sign in / Sign up

Export Citation Format

Share Document