3-D examination of the cytoskeletal sheets of mammalian eggs

Author(s):  
Carolyn A. Larabell ◽  
David G. Capco ◽  
G. Ian Gallicano ◽  
Robert W. McGaughey ◽  
Karsten Dierksen ◽  
...  

Mammalian eggs and embryos contain an elaborate cytoskeletal network of “sheets” which are distributed throughout the entire cell cytoplasm. Cytoskeletal sheets are long, planar structures unlike the cytoskeletal networks typical of somatic cells (actin filaments, microtubules, and intermediate filaments), which are filamentous. These sheets are not found in mammalian somatic cells nor are they found in nonmammalian eggs or embryos. Evidence that they are, indeed, cytoskeletal in nature is derived from studies demonstrating that 1) the sheets are retained in the detergent-resistant cytoskeleton fraction; 2) there are no associated membranes (determined by freeze-fracture); and 3) the sheets dissociate into filaments at the blastocyst stage of embryogenesis. Embedment-free sections of hamster eggs viewed at 60 kV show sheets running across the egg cytoplasm (Fig. 1). Although this approach provides excellent global views of the sheets and their reorganization during development, the mechanism of image formation for embedment-free sections does not permit evaluation of the sheets at high resolution.

Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1277-1284 ◽  
Author(s):  
Hiroshi Shitara ◽  
Hideki Kaneda ◽  
Akitsugu Sato ◽  
Kimiko Inoue ◽  
Atsuo Ogura ◽  
...  

Abstract Exclusion of paternal mitochondria in fertilized mammalian eggs is very stringent and ensures strictly maternal mtDNA inheritance. In this study, to examine whether elimination was specific to sperm mitochondria, we microinjected spermatid or liver mitochondria into mouse embryos. Congenic B6-mtspr strain mice, which are different from C57BL/6J (B6) strain mice (Mus musculus domesticus) only in possessing M. spretus mtDNA, were used as mitochondrial donors. B6-mtspr mice and a quantitative PCR method enabled selective estimation of the amount of M. spretus mtDNA introduced even in the presence of host M. m. domesticus mtDNA and monitoring subsequent changes of its amount during embryogenesis. Results showed that M. spretus mtDNA in spermatid mitochondria was not eliminated by the blastocyst stage, probably due to the introduction of a larger amount of spermatid mtDNA than of sperm mtDNA into embryos on fertilization. However, spermatid-derived M. spretus mtDNA was eliminated by the time of birth, whereas liver-derived M. spretus mtDNA was still present in most newborn mice, even though its amount introduced was significantly less than that of spermatid mtDNA. These observations suggest that mitochondria from spermatids but not from liver have specific factors that ensure their selective elimination and resultant elimination of mtDNA in them, and that the occurrence of elimination is not limited to early stage embryos, but continues throughout embryogenesis.


2004 ◽  
Vol 16 (2) ◽  
pp. 150 ◽  
Author(s):  
M. Matshikiza ◽  
P. Bartels ◽  
G. Vajta ◽  
F. Olivier ◽  
T. Spies ◽  
...  

Wildlife conservation requires traditional as well as innovative conservation strategies in order to preserve gene and species diversity. Interspecies nuclear transfer has the potential to conserve genes from critically endangered wildlife species where few or no oocytes are available from the endangered species, and where representative cell lines have been established for the wildlife population while numbers were still abundant. The purpose of this study was to investigate the developmental ability of embryos reconstructed with transfer of somatic cells from the African buffalo (Syncerus caffer), bontebok (Damaliscus dorcus dorcus) and eland (Taurotragus oryx) to enucleated domestic cattle (Bos taurus) oocytes. Skin tissue from the three wildlife species were collected by surgically removing approx. 1.0×1.0cm ear skin notches from animals immobilized with a combination of etorphine hydrochloride (M99; South Africa) and azaperone (Stressnil, South Africa). The biopsies were placed into physiological saline and transported to the laboratory at 4°C within 2h, cleaned with chlorohexidine gluconate and sliced finely in Minimal Essential Medium supplemented with 10% fetal calf serum. The resultant tissue explants were treated as previously described (Baumgarten and Harley 1995 Comp. Biochem. Physiol. 110B, 37–46) and actively growing fibroblast cultures made available for the nuclear transfer process. Nuclear transfer was performed using the HMC technique (Vajta et al., 2003 Biol. Reprod. 68, 571–578) using slaughterhouse-derived bovine oocytes. Culture was performed in SOFaaci (Vajta et al., 2003 Biol. Reprod. 68, 571–578) medium supplemented with 5% cattle serum using WOWs (Vajta et al., Mol. Reprod. Dev. 50, 185–191). Two identical replicates were made with somatic cells of each species. After successful reconstruction, 57, 42 and 48 nuclear transferred and activated buffalo, bontebok and eland embryos were cultured, respectively. All except for 2 buffalo embryos cleaved; 22 (39%) developed to or over the 8-cell stage, and 2 (3.5%) of them to the blastocyst stage. All but 3 bontebok embryos cleaved, 17 (40%) developed to or over the 8-cell stage, but none of them reached the compacted morula or blastocyst stage. Sixteen (33%) of the eland embryos developed to or over the 8-cell stage with one (2%) reaching the blastocyst stage. In conclusion, buffalo, bontebok and eland embryos developed from reconstruction using their respective somatic cells combined with bovine cytoplasts, however, in vitro developmental ability to the blastocyst stage was limited. Additional basic research that establishes the regulative mechanisms involved with early preimplantation development together with optimising nuclear transfer techniques may have the potential to one day play a role in the conservation of critically endangered wildlife species.


Soft Matter ◽  
2020 ◽  
Vol 16 (31) ◽  
pp. 7191-7201 ◽  
Author(s):  
Leila Farhadi ◽  
Shea N. Ricketts ◽  
Michael J. Rust ◽  
Moumita Das ◽  
Rae M. Robertson-Anderson ◽  
...  

Microtubules (left) and actin filaments (right) show low mobility when in bundles because actin is swept up into static microtubule bundles.


1965 ◽  
Vol 13 (6) ◽  
pp. 470-475 ◽  
Author(s):  
K. ISHIDA ◽  
M. C. CHANG

Succinic dehydrogenase activity, using Nitro-blue tetrazolium salt as electron acceptor, has been demonstrated histochemically in hamster and rabbit eggs before implantation. The formazans formed as blue granules are spread throughout the cytoplasm and among vitelline granules, corresponding to the distribution of mitochondria. The intensity and distribution of these granules vary according to the developmental stage of the eggs. Incubation of hamster eggs for 1 hour produced a weekly and evenly distributed reaction in most (92%) of the unfertilized eggs, while 57% of fertilized 1-cell eggs showed a moderate reaction. Although 84% of the 2-cell eggs, 95% of the 4-cell eggs, and 98% of the 8-cell eggs showed moderate reaction, 78% of blastocysts showed strong activity. In the rabbit egg the time required to develop the reaction was about 4-6 hours for unfertilized and pronuclear eggs, 3-5 hours for 2-cell eggs, 2 hours for 32-cell eggs, 1-2 hours for morulae, and only 0.5-1 hour for blastocysts. The development of succinic dehydrogenase in mammalian eggs at the first cleavage, its gradual increase during cleavage, and its tremendous increase at the blastocyst stage have been clearly demonstrated. The importance of this enzyme activity in relation to oxygen uptake, pathways of carbohydrate metabolism, and the degeneration of eggs are discussed.


mBio ◽  
2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Allan L. Chen ◽  
Elliot W. Kim ◽  
Justin Y. Toh ◽  
Ajay A. Vashisht ◽  
Andrew Q. Rashoff ◽  
...  

ABSTRACT The inner membrane complex (IMC) of Toxoplasma gondii is a peripheral membrane system that is composed of flattened alveolar sacs that underlie the plasma membrane, coupled to a supporting cytoskeletal network. The IMC plays important roles in parasite replication, motility, and host cell invasion. Despite these central roles in the biology of the parasite, the proteins that constitute the IMC are largely unknown. In this study, we have adapted a technique named proximity-dependent biotin identification (BioID) for use in T. gondii to identify novel components of the IMC. Using IMC proteins in both the alveoli and the cytoskeletal network as bait, we have uncovered a total of 19 new IMC proteins in both of these suborganellar compartments, two of which we functionally evaluate by gene knockout. Importantly, labeling of IMC proteins using this approach has revealed a group of proteins that localize to the sutures of the alveolar sacs that have been seen in their entirety in Toxoplasma species only by freeze fracture electron microscopy. Collectively, our study greatly expands the repertoire of known proteins in the IMC and experimentally validates BioID as a strategy for discovering novel constituents of specific cellular compartments of T. gondii. IMPORTANCE The identification of binding partners is critical for determining protein function within cellular compartments. However, discovery of protein-protein interactions within membrane or cytoskeletal compartments is challenging, particularly for transient or unstable interactions that are often disrupted by experimental manipulation of these compartments. To circumvent these problems, we adapted an in vivo biotinylation technique called BioID for Toxoplasma species to identify binding partners and proximal proteins within native cellular environments. We used BioID to identify 19 novel proteins in the parasite IMC, an organelle consisting of fused membrane sacs and an underlying cytoskeleton, whose protein composition is largely unknown. We also demonstrate the power of BioID for targeted discovery of proteins within specific compartments, such as the IMC cytoskeleton. In addition, we uncovered a new group of proteins localizing to the alveolar sutures of the IMC. BioID promises to reveal new insights on protein constituents and interactions within cellular compartments of Toxoplasma.


Zygote ◽  
2014 ◽  
Vol 23 (6) ◽  
pp. 916-923 ◽  
Author(s):  
WooJae Choi ◽  
SooYoung Yum ◽  
SongJeon Lee ◽  
WonWu Lee ◽  
JiHyun Lee ◽  
...  

SummaryGenome-editing technologies are considered to be an important tool for generating gene knockout cattle models. Here, we report highly efficient disruption of a chromosomally integrated eGFP gene in bovine somatic cells using RNA-guided endonucleases, a new class of programmable nucleases developed from a bacterial Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system. In the present study, we obtained homogenously eGFP-expressing primary fibroblasts from cloned bovine transgenic embryonic tissues and employed them for further analysis. CRISPR/Cas9 plasmids specifically targeting the eGFP gene were transfected into the eGFP fibroblasts by electroporation. After 10 days of culture, more than 40% of the cells had lost eGFP expression in fluorescence activated cell sorting (FACS) analysis. Targeted sequences of the transfected cells were analyzed, and various small indel mutations (6–203 bp deletions) in the target sequence were found. The fibroblasts mutated with the CRISPR/Cas9 system were applied for somatic cell nuclear transfer, and the reconstructed embryos were successfully developed into the blastocyst stage. In conclusion, the CRISPR/Cas9 system was successfully utilized in bovine cells and cloned embryos. This will be a useful technique to develop livestock transgenesis for agricultural science.


1984 ◽  
Vol 220 (1220) ◽  
pp. 339-352 ◽  

Labile cytoskeletal structures in the cytoplasm of photoreceptors of the blowfly Lucilia and of Drosophila were stabilized before primary fixation for electron microscopy by retinal infiltration with two inhibitors of thiol proteases, Ep-459 or Ep-475. Alternatively, pretreatments employed EGTA in combination with the Ca 2+ ionophore A23187. The following cytoskeletal structures were revealed, (i) Radial, robust filaments run roughly parallel to the axes of the rhabdomeral microvilli and may be continuous with the axial microvillar filaments. They have diameters of 8 nm upwards, and are occasionally seen to be in association with radial microtubules and with pigment granules. (ii) Slender radial filaments with diameters in the 6-8 nm range extend for shorter distances from the bases of microvilli, and are also associated with endocytotic structures. (iii) The receptor cytoplasm is densely occupied by an ill-defined, filamentous network. (iv) Bundles of slender filaments run longitudinally on each side of rhabdoms of R 1-6 in Lucilia , close to the plasma membrane. Dimensions cited for all categories of filament must be treated with caution because of problems of resolution. Photoreceptors do not bind the fluorescent F-actin probe NBD-phallacidin either without or after treatment with thiol protease inhibitors, and slender filaments are of greater diameter than the 4-5 nm obtained for identified actin filaments in the basement membrane of the compound eye of Lucilia . Infiltration of retinae with Ep-459 or Ep-475 neither prejudices phototransduction, nor impairs the radial migrations of granules of screening pigment in response to light or dark adaption. The status of these cytoskeletal elements is discussed in terms of the dynamic processes of the photoreceptors, and of various labile filaments described from recent studies of vertebrate material using the deep-etch freeze-fracture technique.


2020 ◽  
Vol 01 (Fall) ◽  
pp. 18-22
Author(s):  
Rasim Hajiyev

Purpose:Based on the literature review and previous data, an analogy is drawn between the structure of the vitreous body and somatic cells. A comparison is made between changes in the vitreous body with age and the aging of somatic cells. Methods: A review of the literature and hypotheses. Results(Hypothesis): With age, the amount of hyaluronic acid and microfibrils decreases and the volume of “empty space” increases, leading to the collapse of the vitreous body and a complete detachment. Let us imagine the vitreous body as a giant cell with a central nucleus. The cytoskeleton permeates the entire cell. The cytoskeleton provides a structural framework for the cell, serving as a framework that determines cell shape and the general organization of the cytoplasm. Importantly, the cytoskeleton is much less rigid and permanent than its name implies. We see the same thing in the microfibrils of the vitreous body.Conclusion:With age, the density of the fibrillarstructure of the vitreous body decreases. This structure is apparently, is an evolutionary intracellular formation that formed as a result of the apoptosis of the mesenchymal cells that form the primary vitreous body. An analogy is drawn between the loss of the density of fibrils of the vitreous body and the density of the cytoskeleton of asomatic cell. The loss of the cytoskeleton of a cell is a fatal process that cannot be stopped. The cytoskeleton cannot hold the nucleus in the center of the cell, whichis why the nucleiof theoldercells are not in the center, but are shifted to the periphery.


2008 ◽  
Vol 20 (1) ◽  
pp. 102
Author(s):  
J. Liu ◽  
M. E. Westhusin ◽  
D. C. Kraemer

Somatic cells in semen could be a valuable source of nuclei for cloning animals by somatic cell nuclear transfer, especially when other ways of obtaining somatic cells are not available. The usefulness of the cells cultured from bovine semen for nuclear transfer was evaluated in the present study. Twelve ejaculates were collected from nine bulls representing three breeds: Charolais, Brahman, and a crossbreed rodeo bull. All of the samples were processed immediately, and somatic cells were isolated by centrifuging through 20%, 50%, and 90% percoll columns (Nel-Themaat et al. 2005 Reprod. Fertil. Dev. 17, 314–315). Somatic cell lines were obtained from 7 of the 12 ejaculates. These cell lines have classic epithelial morphology, express cytokeratin and vimentin, and proliferate well in the medium we previously designed for the epithelial cells in ovine semen (Jie Liu et al. 2007 Biol. Reprod. special issue, 177–178). Cell lines from three bulls that had been cultured in vitro for 1–2 months were used in the cloning experiments. Bovine ovaries were collected from a local slaughterhouse and transported to the laboratory in warm saline solution within 2–4 h. Compact cumulus–oocyte complexes with evenly distributed cytoplasm were selected and matured for 18 h at 38.5�C with 5% CO2 in humidified air. Cumulus cells were removed by pipetting in 0.3% hyaluronidase solution (Sigma Chemical Co., St. Louis, MO, USA) for 5 min. Oocytes were selected for the presence of a first polar body and stained in 5 µg mL–1 Hoechst 33342 (Sigma) and 5 µg mL–1 cytochalasin B (Sigma) for 10–15 min before enucleation. Successful enucleation was confirmed by brief exposure of the oocytes to ultraviolet light. Epithelial cell lines cultured to 90–100% confluence were trypsinized, and a single cell was inserted into the perivitelline space of an oocyte. Fusion was induced by applying two 1.8–1.9 kV cm–1, 20 µs direct-current pulses delivered by an Eppendorf Multiporator (Eppendorf, North America) in fusion medium comprising 0.28 m Mannitol (Sigma), 0.1 mm CaCl2 (Sigma), and 0.1 mm MgSO4 (Sigma). One and half to 2 h post fusion, activation was induced by applying two 0.3 kV cm–1, 55 µs direct-current pulses in the fusion medium, followed by incubation in 10 µg mL–1 cycloheximide (Sigma) and 5 µg mL–1 cytochalasin B for 5 h in a humidified 5% CO2, 5% O2, and 90% N2 gas mixture at 38.5�C. The embryos were washed three times and cultured in commercially available G1/G2 medium (Vitrolife, Inc., Englewood, CO, USA) for up to 10 days. Blastocyst development rates using somatic cells from three of the bulls, 1-year-old Charolais, 6-year-old Brahman, and 8-year-old Brahman, were 15.9% (18/113), 34.5% (29/84), and 14.4% (13/90) of the fused one-cell embryos, respectively. Of these blastocyst stage embryos, 38.9% (7/18), 72.4% (21/29), and 61.5% (8/13) hatched, respectively. The present study shows that epithelial cells cultured from bovine semen can be used to produce blastocyst-stage embryos by somatic cell nuclear transfer.


2012 ◽  
Vol 24 (1) ◽  
pp. 223 ◽  
Author(s):  
Z. Tancos ◽  
O. Ujhelly ◽  
M. K. Pirity ◽  
A. Dinnyes

Induced pluripotent stem cells (iPSC) technology, which allows direct reprogramming of somatic cells to a pluripotent state, is a promising tool for gene-function studies disease modelling, drug screening, toxicology tests and to generate knockout animal models. The goal of the current work was to close the gap in knowledge with regard to the molecular biological background for rabbit iPS work by isolating the putative pluripotency genes from the rabbit, based on the sequences published for other species. The sequence of known pluripotency genes (Oct4, Sox2, Klf4, c-Myc, Nanog) were analysed and primers designed based on the similarity of sequences. Sequences of each individual rabbit pluripotency gene was compared to other vertebrates (e.g. human, mouse, bovine) phylogenetically. Rabbit ESCs and blastocyst stage embryos were collected from superovulated rabbits to isolate total RNA. Genes of interest were amplified using RT-PCR and electrophoretically separated for cDNA fragment isolation. Isolated and subcloned cDNA fragments were sequenced and analysed. Our results showed that after restriction digestion the size of amplified and cloned rabbit Oct4, Sox2, Klf4, c-Myc and Nanog gene fragments correspond to the expected amplicon size. Furthermore, sequence confirmation by DNA sequencing has been completed in the case of Oct4, c-Myc, Klf4 and Nanog. The homology of these genes to that of their mouse and human orthologs were as follows: Oct4: at Na level 79% homologue to mouse, 85% homologue to human, at Aa level 81% homologue to mouse, 90% homologue to human; Klf4: at Na level 98% homologue to mouse, 85% homologue to human, at Aa level 95% homologue to mouse, 84% homologue to human; c-myc: at Na level 88% homologue to mouse, 92% homologue to human, at Aa level 91% homologue to mouse and 94% homologue to human; Nanog: at Na level 71% homologue to mouse, 78% homologue to human, at Aa level 55% homologue to mouse, 66% homologue to human. In conclusion, we have revealed differences at both Na and Aa level in all four major rabbit pluripotency gene sequences in comparison to their mammalian orthologs which might partially explain difficulties in generation of rabbit iPSC capable of germline transmission. Our further goal is to apply rabbit specific pluripotency genes to reprogram somatic cells and generate iPSC more efficiently than by using mouse or human genes. This work was supported by grants from Plurabbit, OMFB-00130/2010 ANR-NKTH; NKTH-OTKA-EU-7KP HUMAN-MB08-C-80-205; EU FP7 (AniStem, PIAP-GA-2011-286264PartnErS, PIAP-GA-2008-218205; InduStem, PIAP-GA-2008-230675; InduHeart, PEOPLE-IRG-2008-234390; InduVir, PEOPLE-IRG-2009-245808; PluriSys, HEALTH-2007-B-223485).


Sign in / Sign up

Export Citation Format

Share Document