Evaluating the Role of Genetic Change in Insect Colonies Maintained for Pest Management

2021 ◽  
pp. 269-288
Author(s):  
Robert L. Mangan
2005 ◽  
Vol 5 (14) ◽  
pp. 1-10 ◽  
Author(s):  
J. F. Brunner ◽  
E. H. Beers ◽  
J. E. Dunley ◽  
M. Doerr ◽  
K. Granger

2019 ◽  
Vol 461 ◽  
pp. 59-67 ◽  
Author(s):  
Fahad Al Basir ◽  
Arnab Banerjee ◽  
Santanu Ray

2021 ◽  
pp. 641-668
Author(s):  
Jürgen Köhl ◽  

Bioprotectants have the potential to replace chemical pesticides in agricultural cropping systems and crop protection approaches. Development of new bioprotectants in combination with more restricted use of chemical crop protection will result in their much stronger market position in the future. Bioprotectants fulfil particular roles in current and future crop protection approaches, primarily reducing pesticide residues in harvested products in conventional systems, as well as being the first and preferred control option in integrated pest management programs and organic farming, and complementing resident microbiomes in future resilient cropping systems. The process of developing bioprotectants can take ten to 15 years. This chapter aims to give a brief overview of the role of bioprotectants in current and future crop protection approaches to stimulate discussion within the biocontrol industries, and amongst scientists and funding agencies on the need for new generations of bioprotectants for an agriculture industry undergoing transition.


2000 ◽  
Vol 90 (2) ◽  
pp. 147-154 ◽  
Author(s):  
G.N. Mbata ◽  
S. Shu ◽  
S.B. Ramaswamy

Females of Callosobruchus spp. are known to produce sex pheromones that attract males. These sex pheromones cannot be adopted for use in pest management without first investigating the responses of the males in the windless conditions of storage environments. Consequently, behavioural bioassays of Callosobruchus subinnotatus Pic males were conducted in an olfactometer in the absence of air-flow. Under these conditions males were found to be able to follow odour trails to the source. However, the latency period was longer in diffusional bioassays than for insects in a Y-tube olfactometer that provided directional wind cues. The highest percentage of males reached the pheromone source when components of the pheromones, (E)-3-methyl-2-heptenoic acid (E32A) and (Z)-3-methyl-2-heptenoic acid (Z32A), were formulated in a 50:50 or 25:75 ratio. Males of C. maculatus (Fabricius) responded to sex pheromone of C. subinnotatus, but males of C. subinnotatus did not respond to that of C. maculatus. The two sex pheromone components of C. subinnotatus are also constituents of C. maculatus sex pheromone. These two components may be potentially useful in monitoring the populations of both species in stored beans. It is postulated that (Z)-3-methyl-3-heptenoic acid (Z33A), the major component of the sex pheromone of C. maculatus, must have acted as an antagonist inhibiting response of C. subinnotatus to the sex pheromone of C. maculatus.


2017 ◽  
pp. 175-194 ◽  
Author(s):  
Mark A.K. Gillespie ◽  
Steve D. Wratten

Sign in / Sign up

Export Citation Format

Share Document