The role of bioprotectants for disease control in integrated crop protection approaches

2021 ◽  
pp. 641-668
Author(s):  
Jürgen Köhl ◽  

Bioprotectants have the potential to replace chemical pesticides in agricultural cropping systems and crop protection approaches. Development of new bioprotectants in combination with more restricted use of chemical crop protection will result in their much stronger market position in the future. Bioprotectants fulfil particular roles in current and future crop protection approaches, primarily reducing pesticide residues in harvested products in conventional systems, as well as being the first and preferred control option in integrated pest management programs and organic farming, and complementing resident microbiomes in future resilient cropping systems. The process of developing bioprotectants can take ten to 15 years. This chapter aims to give a brief overview of the role of bioprotectants in current and future crop protection approaches to stimulate discussion within the biocontrol industries, and amongst scientists and funding agencies on the need for new generations of bioprotectants for an agriculture industry undergoing transition.

2015 ◽  
Vol 64 (2) ◽  
pp. 157-162 ◽  
Author(s):  
HAFIZA ASMA SHAFIQUE ◽  
VIQAR SULTANA ◽  
JEHAN ARA ◽  
SYED EHTESHAMUL-HAQUE ◽  
MOHAMMAD ATHAR

Without application of chemical pesticides control of soilborne diseases is a great challenge. Stimulation of natural plant's defense is considered as one of the most promising alternative strategy for crop protection. Organic amendment of soil besides direct suppressing the pathogen, has been reported to have an influence on phytochemicals in plants. In the present study, Pseudomonas aeruginosa, a plant growth promoting rhizobacterium and Paecilomyces lilacinus, an egg parasite of root knot and cysts nematodes were examined individually and in combination in soil amended with cotton cake for suppressing the root rotting fungi and stimulating the synthesis of polyphenols and improving the antioxidant status in okra. Application of P. aeruginosa and P. lilacinus in soil amended with cotton cake significantly (P < 0.05) suppressed Macrophomina phaseolina, Fusarium oxysporum, and Fusarium solani with complete reduction of Rhizoctonia solani. Combine use of biocontrol agents in cotton cake amended soil showed maximum positive impact on plant growth, polyphenol concentration and antioxidant activity in okra.


1992 ◽  
Vol 40 (3) ◽  
pp. 225-238 ◽  
Author(s):  
F.G. Wijnands ◽  
P. Vereijken

In the Netherlands integrated arable farming systems (IFS) are being developed at three regional experimental farms, with region-specific crop rotations and cropping systems. Most pesticide and fertilizer inputs appear to be replaceable by non-chemical methods and organic manure, with economic results similar to conventional systems. The targeted reductions in pesticide use in the Netherlands' Multi-Year Crop Protection Plan for the year 2000 can already clearly be met. Further improvements of the prototype systems are considered. Recently started farming systems research for outdoor horticulture is briefly discussed. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Antul Kumar ◽  
Anuj Choudhary ◽  
Harmanjot Kaur ◽  
Sahil Mehta ◽  
Azamal Husen

AbstractConventional agriculture solely depends upon highly chemical compounds that have negatively ill-affected the health of every living being and the entire ecosystem. Thus, the smart delivery of desired components in a sustainable manner to crop plants is the primary need to maintain soil health in the upcoming years. The premature loss of growth-promoting ingredients and their extended degradation in the soil increases the demand for reliable novel techniques. In this regard, nanotechnology has offered to revolutionize the agrotechnological area that has the imminent potential over conventional agriculture and helps to reform resilient cropping systems withholding prominent food security for the ever-growing world population. Further, in-depth investigation on plant-nanoparticles interactions creates new avenues toward crop improvement via enhanced crop yield, disease resistance, and efficient nutrient utilization. The incorporation of nanomaterial with smart agrochemical activities and establishing a new framework relevant to enhance efficacy ultimately help to address the social acceptance, potential hazards, and management issues in the future. Here, we highlight the role of nanomaterial or nanocomposite as a sustainable as well stable alternative in crop protection and production. Additionally, the information on the controlled released system, role in interaction with soil and microbiome, the promising role of nanocomposite as nanopesticide, nanoherbicide, nanofertilizer, and their limitations in agrochemical activities are discussed in the present review.


2011 ◽  
Vol 366 (1573) ◽  
pp. 1987-1998 ◽  
Author(s):  
David Chandler ◽  
Alastair S. Bailey ◽  
G. Mark Tatchell ◽  
Gill Davidson ◽  
Justin Greaves ◽  
...  

Over the past 50 years, crop protection has relied heavily on synthetic chemical pesticides, but their availability is now declining as a result of new legislation and the evolution of resistance in pest populations. Therefore, alternative pest management tactics are needed. Biopesticides are pest management agents based on living micro-organisms or natural products. They have proven potential for pest management and they are being used across the world. However, they are regulated by systems designed originally for chemical pesticides that have created market entry barriers by imposing burdensome costs on the biopesticide industry. There are also significant technical barriers to making biopesticides more effective. In the European Union, a greater emphasis on Integrated Pest Management (IPM) as part of agricultural policy may lead to innovations in the way that biopesticides are regulated. There are also new opportunities for developing biopesticides in IPM by combining ecological science with post-genomics technologies. The new biopesticide products that will result from this research will bring with them new regulatory and economic challenges that must be addressed through joint working between social and natural scientists, policy makers and industry.


1996 ◽  
Vol 25 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Reuben Ausher

Protection of crop and ornamental plants from noxious organisms — insects, nematodes, mites, pathogens and weeds — is indispensable to modern agriculture. Despite intensive control efforts, about 50% of the world's crops are lost to these organisms, at an estimated annual cost of about 400 billion dollars. Ever since the advent of synthetic pesticides in the 1940s, modern crop protection has been largely based on chemical control. Pesticide expenditures are about 20% of total farming input costs, although this figure varies substantially according to crop and region. Mounting environmental concerns and pest control failures have made It increasingly clear that the use of toxic pesticides In agriculture should be drastically reduced all over the world.


Sign in / Sign up

Export Citation Format

Share Document