lepidopteran pests
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 68)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Govindaraju Ramkumar ◽  
Ramasamy Asokan ◽  
N. R. Prasannakumar ◽  
B. Kariyanna ◽  
Sengodan Karthi ◽  
...  

The South American pinworm Tuta absoluta (Meyrick) (Family: Gelechiidae) is one of the most devastating lepidopteran pests in the developing countries of South America, Africa, and Asia. This pest is classified as the most serious threat for tomato production worldwide. In the present study, we analyzed RNAi-mediated control through exogenously applied dsRNA delivery on tomato. The dsRNA treatments were made to target the juvenile hormone binding protein and the v-ATPase B. Both mRNA targets were cloned, validated by sequencing, and used to produce each dsRNA. After treatments the relative transcript expression was analyzed using qRTPCR to assess to efficacy of RNAi. A leaf-dip assay was used to provide late 2nd instar larvae three feeding access periods: 24, 48, and 72 h, to evaluate the effect of gene silencing of each target. Larvae were fed tomato leaves coated with five different RNAi concentrations (10, 20, 30, 40, and 50 micrograms/centimeter-squared), that suppressed two genes (juvenile hormone protein, JHBP, and vacuolar-type adenosine triphosphatase enzyme, v-ATPase). Treatments with dsRNA showed a significant increase in mortality at 24, 48, and 72 h after ingestion (P < 0.01, α = 0.05), along with reduced leaf damage, and increased feeding deterrence. The results suggest that these two RNAi products may provide a suitable treatment for control of this and other lepidopteran pests.


2021 ◽  
Author(s):  
◽  
Adriana Ricarte Bermejo

The increased costs associated with baculovirus mass-production urge the search for synergistic products that reduce the amount of active matter. In the present thesis, a synergistic factor with great potential for baculovirus-based formulations was expressed and produced using a baculovirus expression system. The main achievement of the present thesis is that the in vivo production of solubilized enhancins using baculovirus-based expression systems can be used to improve the efficacy of biological insecticides against lepidopteran pests, reducing the active matter of bioinsecticides and making them commercially competitive with chemicals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Renato J. Horikoshi ◽  
Oderlei Bernardi ◽  
Daniela N. Godoy ◽  
Altair A. Semeão ◽  
Alan Willse ◽  
...  

AbstractWidespread adoption of MON 87701 × MON 89788 soybean, expressing Cry1Ac Bt protein and glyphosate tolerance, has been observed in Brazil. A proactive program was implemented to phenotypically and genotypically monitor Cry1Ac resistance in Chrysodeixis includens (Walker). Recent cases of unexpected injury in MON 87701 × MON 89788 soybean were investigated and a large-scale sampling of larvae on commercial soybean fields was performed to assess the efficacy of this technology and the distribution of lepidopteran pests in Brazil. No significant shift in C. includens susceptibility to Cry1Ac was observed eight years after commercial introduction of this technology in Brazil. F2 screen results confirmed that the frequency of Cry1Ac resistance alleles remains low and stable in C. includens. Unexpected injury caused by Rachiplusia nu (Guenée) and Crocidosema aporema (Walsingham) in MON 87701 × MON 89788 soybean was detected during the 2020/21 season, and studies confirmed a genetically based alteration in their susceptibility to Cry1Ac. MON 87701 × MON 89788 soybean remains effective against Anticarsia gemmatalis (Hübner), C. includens, Chloridea virescents (Fabricius) and Helicoverpa armigera (Hübner) in Brazil. However, there is evidence of field-evolved resistance to MON 87701 × MON 89788 soybean by the secondary soybean pests R. nu and C. aporema.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jin-Cheng Zhou ◽  
Qian Zhao ◽  
Shi-Meng Liu ◽  
Dan Shang ◽  
Xu Zhao ◽  
...  

Thelytokous Wolbachia-infected Trichogramma species have long been considered as biological control agents against lepidopteran pests in agriculture and forestry. Wolbachia has been suggested to increase the probability of the superparasitism of Trichogramma, but the fate of infected offspring in the superparasitised host is still unknown. The present study aimed to evaluate the fitness of thelytokous Wolbachia-infected (TDW) and bisexual Wolbachia-free (TD) Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) lines in superparasitised or single-parasitised hosts. The results showed that irrespective of whether Trichogramma wasps were developed from superparasitised or single-parasitised hosts, the TDW line was characterized by reduced fitness, including lower fecundity, shorter longevity, and smaller body size of F1 offspring, and lower emergence rate of F2 offspring than the TD line. This was not true for the survival rate and developmental time of F1 offspring. Additionally, the fitness parameters of T. dendrolimi that developed from superparasitised hosts were lower compared with that of T. dendrolimi that developed from single-parasitised hosts. Interestingly, Wolbachia-infected females had higher dispersal capacity than bisexual females when they developed from superparasitised hosts. The results indicated that Wolbachia negatively affects fitness of T. dendrolimi, but enhance dispersal capacity of T. dendrolimi females in superparasitism condition. Further studies need to be carried out to select the best line that will allow Wolbachia and their host Trichogramma to be better adapted to one another.


2021 ◽  
Author(s):  
Anthony Daniel Greene ◽  
Francis P F Reay-Jones ◽  
Kendall R Kirk ◽  
Brandon K Peoples ◽  
Jeremy K Greene

Abstract In soybean, Glycine max (L.) Merrill, production, losses to, and control costs for insect pests can be significant limiting factors. Although the heterogeneity of pests has typically been ignored in traditional field management practices, technological advancements have allowed for site-specific pest management systems to be developed for the precise control of pests within a field. In this study, we chose to determine how the in-field distributions of the larvae of three major lepidopteran pests [velvetbean caterpillar Anticarsia gemmatalis (Hübner) (Lepidoptera: Erebidae), soybean looper Chrysodeixis includens (Walker) (Lepidoptera: Noctuidae), and green cloverworm Hypena scabra (Lepidoptera: Erebidae) (Fabricius)] were spatially associated with defoliation, Normalized Difference Vegetation Index (NDVI), and plant height in soybean. Spatial analysis by distance indices (SADIE) of data from two South Carolina soybean fields in 2017 and 2018 revealed a limited number of spatial aggregations for insect datasets. However, 14% and 6% of paired plant–insect datasets were significantly associated or dissociated, respectively. NDVI was found to be more associated with pest distributions than soybean plant heights and defoliation estimates, and the majority of all plant–insect associations and dissociations occurred in the first 4 wk of sampling (late July–early August). If changes are to be implemented regarding how a pest is managed, critical factors explaining the spatial distribution of pests must be identified. Results from this study advocate for the relationship between early-season distributions of pests and important plant variables such as NDVI to be further investigated to better determine the strength of the correlations across years and sites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Renato J. Horikoshi ◽  
Patrick M. Dourado ◽  
Geraldo U. Berger ◽  
Davi de S. Fernandes ◽  
Celso Omoto ◽  
...  

AbstractThe soybean technology MON 87701 × MON 89788, expressing Cry1Ac and conferring tolerance to glyphosate, has been widely adopted in Brazil since 2013. However, pest shifts or resistance evolution could reduce the benefits of this technology. To assess Cry1Ac soybean performance and understand the composition of lepidopteran pest species attacking soybeans, we implemented large-scale sampling of larvae on commercial soybean fields during the 2019 and 2020 crop seasons to compare with data collected prior to the introduction of Cry1Ac soybeans. Chrysodeixis includens was the main lepidopteran pest in non-Bt fields. More than 98% of larvae found in Cry1Ac soybean were Spodoptera spp., although the numbers of Spodoptera were similar between Cry1Ac soybean and non-Bt fields. Cry1Ac soybean provided a high level of protection against Anticarsia gemmatalis, C. includens, Chloridea virescens and Helicoverpa spp. Significant reductions in insecticide sprays for lepidopteran control in soybean were observed from 2012 to 2019. Our study showed that C. includens and A. gemmatalis continue to be primary lepidopteran pests of soybean in Brazil and that Cry1Ac soybean continues to effectively manage the target lepidopteran pests. However, there was an increase in the relative abundance of non-target Spodoptera spp. larvae in both non-Bt and Cry1Ac soybeans.


Author(s):  
Leticia Duarte Martínez ◽  
María de los Angeles Martínez Rivero ◽  
Vanda Helena Paes Bueno ◽  
Jana Collatz

2021 ◽  
Vol 22 (8) ◽  
Author(s):  
Akhmad Rizali ◽  
Oktaviyani Oktaviyani ◽  
Sachristy Putri ◽  
Meygalintang Doananda ◽  
Asti Linggani

Abstract. Rizali A, Oktaviyani, Putri SDPS, Doananda M, Linggani A. 2021. Invasion of fall armyworm Spodoptera frugiperda, a new invasive pest, alters native herbivore attack intensity and natural enemy diversity. Biodiversitas 22: 3482-3488. A new invasive alien pest, fall armyworm Spodoptera frugiperda has been reported widely spread in Indonesia since 2019 and can cause a serious problem in maize cultivation. Its invasion of new habitat may severely impact not only maize production but also native biodiversity including other native pests. This research was aimed to investigate the effect of S. frugiperda invasion on the attack intensity of native herbivores as well as the diversity of natural enemies in maize fields. Field research was conducted in twelve maize fields spread across the district of Malang, Kediri, and Batu, East Java, Indonesia. In each maize field, sampling of S. frugiperda and other insects was conducted by the hand-picking method within four transects with each transect consisting of 100 plants. The results found five species of lepidopteran pests including S. frugiperda, Ostrinia furnacalis, Helicoverpa armigera, Mycalesis sp, and Chrysodeixes sp. S. frugiperda was found with higher attack intensity than other lepidopteran pests. Based on the analysis, the attack intensity of S. frugiperda had a positive relationship with pesticide application and was marginally correlated with plant age and elevation. The infestation of S. frugiperda significantly reduced the attack intensity of other lepidopteran pests as well as the diversity of natural enemies, especially predators. Two native species of parasitoid wasps, Telenomus sp and Mymaridae sp were recorded parasitizing the eggs of S. frugiperda. In conclusion, the infestation of S. frugiperda causes biotic homogenization in the maize field by directly compete with other lepidopteran pests and indirectly eliminate the natural enemy diversity.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 553
Author(s):  
Rohith Vulchi ◽  
Kent M. Daane ◽  
Jacob A. Wenger

Almonds and pistachios are fed upon by a diverse assemblage of lepidopteran insects, several of which are economically important pests. Unfortunately, identification of these pests can be difficult, as specimens are frequently damaged during collection, occur in traps with non-target species, and are morphologically similar up to their third instar. Here, we present a quantitative PCR based melt curve analysis for simple, rapid, and accurate identification of six lepidopteran pests of almonds and pistachios: navel orangeworm (Amyelois transitella), peach twig borer (Anarsia lineatella), oriental fruit moth (Grapholita molesta), obliquebanded leafroller (Choristoneura rosaceana), raisin moth (Cadra figulilella), and Indian meal moth (Plodia interpunctella). In this approach, the dissociation (melt) temperature(s) of a 658 bp section of cytochrome c oxidase subunit 1 was determined using quantitative PCR (qPCR). Within these six species, the distribution and the number of melt peak temperatures provide an unambiguous species level identification that is reproducible when unsheared DNA can be extracted. The test is robust across a variety of sampling approaches including insects removed from sticky card traps, museum specimens, and samples that were left in the field for up to 7 days. The melt curve’s simplicity allows it to be performed in any basic molecular biology laboratory with a quantitative PCR.


Sign in / Sign up

Export Citation Format

Share Document