Einstein, Albert (1879–1955)

Author(s):  
Paul Sheehan

Born in Ulm, Württemberg (now Germany), Einstein was a theoretical physicist who initiated a scientific revolution with his theory of general relativity. Challenging classical mechanics and its basis in Newtonian science, Einstein replaced the Euclidean model of geometry with four-dimensional spacetime and, from the axiom of the absolute speed of light, logically deduced the relativity of time. Subsequent to the advent of relativity theory, there is no longer any absolute temporal metric for defining the real. Einstein published two seminal papers, "Zur Elektrodynamik bewegter Körper" (1905; "The Special Theory of Relativity") and "Die Grundlage der allgemeinen Relativitätstheorie" (1916; "The General Theory of Relativity"), and in 1921 was awarded the Nobel Prize in Physics. His name and iconic visage have become synonymous with modern science, leaving an ineradicable imprint on 20th-century culture far beyond the enclaves of scientific research, a status partly achieved by his willingness to popularize his work. Einstein made lasting contributions to gravitational field theory, astrophysics and quantum mechanics, and much fame has accrued around his groundbreaking formula E = mc2, with its articulation of mass-energy equivalence. But it is with the theory and concept of time-relativity that Einstein’s thought crosses over into cultural and aesthetic modernism.

2021 ◽  
Vol 58 (4) ◽  
pp. 175-195
Author(s):  
Vladimir P. Vizgin ◽  

The article is based on the concepts of epistemic virtues and epistemic vices and explores A. Einstein’s contribution to the creation of fundamental physical theories, namely the special theory of relativity and general theory of relativity, as well as to the development of a unified field theory on the basis of the geometric field program, which never led to success. Among the main epistemic virtues that led Einstein to success in the construction of the special theory of relativity are the following: a unique physical intuition based on the method of thought experiment and the need for an experimental justification of space-time concepts; striving for simplicity and elegance of theory; scientific courage, rebelliousness, signifying the readiness to engage in confrontation with scientific conventional dogmas and authorities. In the creation of general theory of relativity, another intellectual virtue was added to these virtues: the belief in the heuristic power of the mathematical aspect of physics. At the same time, he had to overcome his initial underestimation of the H. Minkowski’s four-dimensional concept of space and time, which has manifested in a distinctive flexibility of thinking typical for Einstein in his early years. The creative role of Einstein’s mistakes on the way to general relativity was emphasized. These mistakes were mostly related to the difficulties of harmonizing the mathematical and physical aspects of theory, less so to epistemic vices. The ambivalence of the concept of epistemic virtues, which can be transformed into epistemic vices, is noted. This transformation happened in the second half of Einstein’s life, when he for more than thirty years unsuccessfully tried to build a unified geometric field theory and to find an alternative to quantum mechanics with their probabilistic and Copenhagen interpretation In this case, we can talk about the following epistemic vices: the revaluation of mathematical aspect and underestimation of experimentally – empirical aspect of the theory; adopting the concepts general relativity is based on (continualism, classical causality, geometric nature of fundamental interactions) as fundamental; unprecedented persistence in defending the GFP (geometrical field program), despite its failures, and a certain loss of the flexibility of thinking. A cosmological history that is associated both with the application of GTR (general theory of relativity) to the structure of the Universe, and with the missed possibility of discovering the theory of the expanding Universe is intermediate in relation to Einstein’s epistemic virtues and vices. This opportunity was realized by A.A. Friedmann, who defeated Einstein in the dispute about if the Universe was stationary or nonstationary. In this dispute some of Einstein’s vices were revealed, which Friedman did not have. The connection between epistemic virtues and the methodological principles of physics and also with the “fallibilist” concept of scientific knowledge development has been noted.


2020 ◽  
Author(s):  
Douglas Michael Snyder

Though Einstein and other physicists recognized the importance of an observer being at rest in an inertial reference frame for the special theory of relativity, the supporting psychological structures were not discussed much by physicists. On the other hand, Rock wrote of the factors involved in the perception of motion, including one’s own motion. Rock thus came to discuss issues of significance to relativity theory, apparently without any significant understanding of how his theory might be related to relativity theory. In this paper, connections between Rock’s theory on the perception of one’s own motion, as well as empirical work supporting it, and relativity theory are explored. Paper available at: https://arxiv.org/abs/physics/9908025v1 .


2021 ◽  
pp. 1-6
Author(s):  
Robert J Buenker ◽  

One of the most basic principles in science is the objectivity of measurement of physical properties. According to the special theory of relativity (STR), this ancient principle is violated for observers in relative motion since it predicts that they generally will disagree on the ratios of the lengths of two objects and also on whose clock is running slower at any given time. Both predictions stem from the Lorentz transformation (LT), which is the centerpiece of Einstein's STR. It has recently been pointed out that two of the claims of this theory are mutually contradictory; it is impossible that the rates of two clocks in motion are strictly proportional to one another (time dilation) while one of them finds that two events are simultaneous whereas the other does not (remote nonsimultaneity). This recognition proves that the LT is not a valid component of the relativistic theory of motion, including its well-known thesis that space and time are not distinct quantities. Instead, it has always been found experimentally that the rates of clocks in motion are governed by a Universal Timedilation Law (UTDL), whereby the speed of the clock relative to a specific rest system is the sole determining factor. A simple way of describing this state of affairs is to say that the standard unit of time in each rest frame is different and increases with its relative speed to the above rest system by a definite factor. The measurement process is thereby rendered to be completely objective in nature. A key goal of relativity theory is therefore to develop a quantitatively valid method for determining this factor. It will be shown that the same factor appears in the true relativistic space-time transformation and that it also plays a key role in the uniform scaling of all other physical properties


Author(s):  
James T. Cushing

Electric charges interact via the electric and magnetic fields they produce. Electrodynamics is the study of the laws governing these interactions. The phenomena of electricity and of magnetism were once taken to constitute separate subjects. By the beginning of the nineteenth century they were recognized as closely related topics and by the end of that century electromagnetic phenomena had been unified with those of optics. Classical electrodynamics provided the foundation for the special theory of relativity, and its unification with the principles of quantum mechanics has led to modern quantum field theory, arguably our most fundamental physical theory to date.


2021 ◽  
pp. 54-75
Author(s):  
A. J. Kox ◽  
H. F. Schatz

Chapter 4 contains an overview of Lorentz’s early work in terms accessible to a general audience. It sheds light on his unique place in science and the importance of his ideas, especially in the field of electromagnetic theory (his theory of electrons). A description of physics in the early nineteenth century, highlighting the role of Faraday and Maxwell, is followed by a discussion of Lorentz’s dissertation and his research program, the explanation of the Zeeman effect and the introduction of the electron, as well as the role of the ether. In this context the famous experiment by Michelson and Morley is also discussed, as well as the electromagnetic world view, Einstein’s special theory of relativity, and the question of which theory was to be preferred: Lorentz’s electron theory or Einstein’s special relativity theory?


2015 ◽  
Vol 37 (3) ◽  
pp. 3401-1-3401-10 ◽  
Author(s):  
María Rita Otero ◽  
Marcelo Arlego ◽  
Fabiana Prodanoff

In this work, we design, implement and analyze a didactic sequence for the teaching of the basic topics of special relativity theory in high school. The sequence proposes a series of situations, specially designed to allow the emergence of the central aspects of special relativity. The conceptualization process is investigated from the point of view of the theory of conceptual fields of Vergnaud. By means of a careful analysis of classroom student productions we detect the key theorems-in-action they use, evidencing that most of conceptual errors are of pre-relativistic nature. This leads us to a reformulation of the sequence, which promotes the conceptualization of Galilean relativity and the principles of the special relativity. This previous step aims at bringing to students a firm basis to address the more complex aspects of the subject.


Sign in / Sign up

Export Citation Format

Share Document