Frequency Weighting and Filters

2020 ◽  
pp. 91-109
Author(s):  
Eddy B. Brixen
Keyword(s):  
Author(s):  
Wei Chen ◽  
S.L. Yuen ◽  
R.H.Y. So

This paper summarizes the progress made in the quest to establish a Cybersickness Dose Value (CSDV). The Motion Sickness Dose Value (MSDV), reported in the British Standard BS6841, has been used to predict the severity of seasickness since 1987. In 1999, the authors of this paper proposed a CSDV formulation with a structure similar to that of the MSDV (So, 1999). Since then, several experiments and simulation studies have been conducted to modify and develop the proposed CSDV formula. In particular, progress has been made in (i) the methods to measure CSDV, (ii) the determination of a frequency weighting curve to equalize the non-linear relationship between the navigation velocity and levels of cybersickness, and (iii) the detailed formulation of CSDV. This paper summarizes the past progress and reports on the current effort in developing a CSDV.


Author(s):  
Luowen Li ◽  
Lihua Xie ◽  
Wei-Yong Yan ◽  
Yeng Chai Soh

Author(s):  
Linggang Kong ◽  
Shuo Li ◽  
Xinlong Chen ◽  
Hongyan Qin

Vehicle on-board equipment is the most important train control equipment in high-speed railways. Due to the low efficiency and accuracy of manual detection, in this paper, we propose an intellectualized fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) network. Firstly, we collect the fault information sheets that are recorded by electrical personnel, using frequency weighting factor and principal component analysis (PCA) to realize the data extraction and dimension reduction; Then, in order to improve the fault diagnosis rate of the model, using genetic algorithm (GA) to optimize the parameters of the ANFIS network; Finally, using the fault data of a high-speed railway line in 2019 to test the model, the optimized ANFIS model can achieve 96% fault diagnosis rate for vehicle on-board equipments, which indicating the method is effective and accurate.


2003 ◽  
Author(s):  
Teruhiko Suzuki ◽  
Kazushi Sato ◽  
Yoichi Yagasaki
Keyword(s):  

Author(s):  
Eugene Santos Jr. ◽  
Hien Nguyen

In this chapter, we study and present our results on the problem of employing a cognitive user model for Information Retrieval (IR) in which a user’s intent is captured and used for improving his/her effectiveness in an information seeking task. The user intent is captured by analyzing the commonality of the retrieved relevant documents. The effectiveness of our user model is evaluated with regards to retrieval performance using an evaluation methodology which allows us to compare with the existing approaches from the information retrieval community while assessing the new features offered by our user model. We compare our approach with the Ide dec-hi approach using term frequency inverted document frequency weighting which is considered to be the best traditional approach to relevance feedback. We use CRANFIELD, CACM and MEDLINE collections which are very popular collections from the information retrieval community to evaluate relevance feedback techniques. The results show that our approach performs better in the initial runs and works competitively with Ide dec-hi in the feedback runs. Additionally, we evaluate the effects of our user modeling approach with human analysts. The results show that our approach retrieves more relevant documents to a specific analyst compared to keyword-based information retrieval application called Verity Query Language.


2020 ◽  
Vol 10 (4) ◽  
pp. 1201 ◽  
Author(s):  
Lei Qi ◽  
Zhoumo Zeng ◽  
Yu Zhang ◽  
Lichen Sun ◽  
Xiaobo Rui ◽  
...  

Clashes between space debris and spacecraft in orbit may cause air leakages, which pose a substantial danger to the crew and the spacecraft. Lamb wave dispersion in spacecraft structures and the randomness of leak holes are the difficulties in leak location. To solve these problems, a frequency weighting matrix beamforming algorithm is proposed in this paper. The elastic Lamb waves that are caused by leakages are acquired by an ‘L’ shaped sensor array consisting of eight acoustic emission sensors. The angle of a leak can be obtained through the superposition of different time delays, and the intersection of two angles can be used to find the location of the leak. Traditional beamforming is improved by matching the wave speeds in different frequency bands and weightings according to the energy distribution. Narrowband filtering is used to delay overlay different signal speeds with different frequency bands via a dispersion curve. The weighting method is used to compensate the frequency band response of different leak holes. The detailed location algorithm process is introduced and verified by experiments. For 1.5 and 2 mm leak holes, location direction accuracies of 1.33° and 1.93° for one sensor array were obtained, respectively.


Sign in / Sign up

Export Citation Format

Share Document