scholarly journals Magnetic resonance imaging of the spinal marrow: Basic understanding of the normal marrow pattern and its variant

2015 ◽  
Vol 7 (12) ◽  
pp. 448 ◽  
Author(s):  
Mohamed Ragab Nouh ◽  
Ahmed Fathi Eid
2007 ◽  
Vol 87 (6) ◽  
pp. 670-683 ◽  
Author(s):  
Teresa Jacobson Kimberley ◽  
Scott M Lewis

Neuroimaging is an emergent method of investigation for studying the human brain in healthy and impaired populations. An increasing number of these investigations involve topics important to rehabilitation. Thus, a basic understanding of the more commonly used neuroimaging techniques is important for understanding and interpreting this growing area of research. Included in this article is a description of the signal source, the advantages and limitations of each technique, considerations for study design, and how to interpret cortical imaging data. Particular emphasis is placed on functional magnetic resonance imaging because of its ubiquitous presence in rehabilitation research.


2018 ◽  
Vol 7 ◽  
pp. 204800401877223
Author(s):  
Vassilios S Vassiliou ◽  
Donnie Cameron ◽  
Sanjay K Prasad ◽  
Peter D Gatehouse

Magnetic resonance imaging physics can be a complex and challenging topic for the practising cardiologist. Its evolving nature and the increasing number of novel sequences used in clinical scanning have been topics of excellent reviews; however, the basic understanding of physics underlying the creation of images remains difficult for many cardiologists. In this review, we go back to the basic physics theories underpinning magnetic resonance and explain their application and use in achieving good quality cardiac imaging, whilst describing established and novel magnetic resonance sequences. By understanding these basic principles, it is anticipated that cardiologists and other health professionals will then appreciate more advanced physics manuscripts on cardiac scanning and novel sequences.


Author(s):  
Alan P. Koretsky ◽  
Afonso Costa e Silva ◽  
Yi-Jen Lin

Magnetic resonance imaging (MRI) has become established as an important imaging modality for the clinical management of disease. This is primarily due to the great tissue contrast inherent in magnetic resonance images of normal and diseased organs. Due to the wide availability of high field magnets and the ability to generate large and rapidly switched magnetic field gradients there is growing interest in applying high resolution MRI to obtain microscopic information. This symposium on MRI microscopy highlights new developments that are leading to increased resolution. The application of high resolution MRI to significant problems in developmental biology and cancer biology will illustrate the potential of these techniques.In combination with a growing interest in obtaining high resolution MRI there is also a growing interest in obtaining functional information from MRI. The great success of MRI in clinical applications is due to the inherent contrast obtained from different tissues leading to anatomical information.


1998 ◽  
Vol 41 (3) ◽  
pp. 538-548 ◽  
Author(s):  
Sean C. Huckins ◽  
Christopher W. Turner ◽  
Karen A. Doherty ◽  
Michael M. Fonte ◽  
Nikolaus M. Szeverenyi

Functional Magnetic Resonance Imaging (fMRI) holds exciting potential as a research and clinical tool for exploring the human auditory system. This noninvasive technique allows the measurement of discrete changes in cerebral cortical blood flow in response to sensory stimuli, allowing determination of precise neuroanatomical locations of the underlying brain parenchymal activity. Application of fMRI in auditory research, however, has been limited. One problem is that fMRI utilizing echo-planar imaging technology (EPI) generates intense noise that could potentially affect the results of auditory experiments. Also, issues relating to the reliability of fMRI for listeners with normal hearing need to be resolved before this technique can be used to study listeners with hearing loss. This preliminary study examines the feasibility of using fMRI in auditory research by performing a simple set of experiments to test the reliability of scanning parameters that use a high resolution and high signal-to-noise ratio unlike that presently reported in the literature. We used consonant-vowel (CV) speech stimuli to investigate whether or not we could observe reproducible and consistent changes in cortical blood flow in listeners during a single scanning session, across more than one scanning session, and in more than one listener. In addition, we wanted to determine if there were differences between CV speech and nonspeech complex stimuli across listeners. Our study shows reproducibility within and across listeners for CV speech stimuli. Results were reproducible for CV speech stimuli within fMRI scanning sessions for 5 out of 9 listeners and were reproducible for 6 out of 8 listeners across fMRI scanning sessions. Results of nonspeech complex stimuli across listeners showed activity in 4 out of 9 individuals tested.


Sign in / Sign up

Export Citation Format

Share Document