Non-Participation, Demand Intensity and Substitution Effects in an Integrable Demand System: The Case of Day Trips to the North-Eastern Alps

Author(s):  
Riccardo Scarpa ◽  
Tiziano Tempesta ◽  
Mara Thiene
2006 ◽  
Vol 6 (5) ◽  
pp. 861-879 ◽  
Author(s):  
S. De Zolt ◽  
P. Lionello ◽  
A. Nuhu ◽  
A. Tomasin

Abstract. This is the first modeling reconstruction of the whole aspects (both meteorological and oceanographic) of the storm which hit Italy on 4 November 1966, producing 118 victims and widespread damages in Tuscany, at the northern Adriatic coast and in the north-eastern Italian Alps. The storm was produced by a cyclone which formed in the western Mediterranean and moved eastward towards Italy, reaching the Thyrrenian Sea, and then northward. The most peculiar characteristic of the storm has been the strong zonal pressure gradient and the consequent intensity and long fetch of the south-easterly sirocco wind, which advected a large amount of warm moist air, and determined exceptional orographic precipitation over Tuscany and the north-eastern Alps. The funneling of the wind between the mountain chains surrounding the Adriatic basin further increased the wind speed and determined the highest ever recorded storm surge along the Venetian coast. This study shows that present models would be able to produce a reasonably accurate simulation of the meteorological event (surface pressure, wind and precipitation fields, and storm surge level). The exceptional intensity of the event is not suggested by single parameters such as the sea level pressure minimum, the wind speed or the total accumulated precipitation. In fact, the precipitation was extreme only in some locations and the pressure minimum was not particularly deep. Moreover, the prediction of the damages produced by the river run-off and landslides would have required other informations concerning soil condition, snow coverage, and storage of water reservoirs before the event. This indicates that an integrated approach is required for assessing the probability of such damages both on a weather forecast and on a climate change perspective.


2019 ◽  
Vol 65 (6) ◽  
Author(s):  
Marcello Franchini ◽  
Alberto Prandi ◽  
Stefano Filacorda ◽  
Eva Nilanthi Pezzin ◽  
Yannick Fanin ◽  
...  

2013 ◽  
Vol 10 (1) ◽  
pp. 77-84 ◽  
Author(s):  
L. Feudale ◽  
A. Manzato ◽  
S. Micheletti

Abstract. This study analyzes the spatial distribution and temporal characteristics of cloud-to-ground lightnings (C2G) in the North East of Italy and the neighboring areas of Austria, Slovenia and Croatia. The dataset consists of about 6.5 millions C2G flash records, both positive and negative, observed between January 1995 and December 2011 by the "Centro Elettrotecnico Sperimentale Italiano-Sistema Italiano Rilevamento Fulmini'' (CESI/SIRF), part of the European Cooperation for Lightning Detection (EUCLID) Network. The results show that C2G lightnings concentrate in the foothill regions on the southern flank of the Eastern Alps with a maximum of discharge frequency of 10 lightnings per km2 per year. The number of C2G strokes varies with the period of the year: the most active period for lightning starts in April and lasts through November with the highest number of C2G strokes happening during the summer months of July and August, with maximum spatial density slightly moving from the mountain to the coastal area. The least frequency of C2G strokes is observed during wintertime. The mean diurnal C2G lightning activity for the whole domain shows a peak around 16:00–17:00 UTC and reaches a minimum around 07:00–09:00 UTC; the mean spatial distribution follows different patterns depending on the period of the day.


1942 ◽  
Vol 21 (8) ◽  
pp. 315
Author(s):  
Bowen ◽  
Vickery ◽  
Buchanan ◽  
Swallow ◽  
Perks ◽  
...  

Author(s):  
Sergey B. Kuklev ◽  
Vladimir A. Silkin ◽  
Valeriy K. Chasovnikov ◽  
Andrey G. Zatsepin ◽  
Larisa A. Pautova ◽  
...  

On June 7, 2018, a sub-mesoscale anticyclonic eddy induced by the wind (north-east) was registered on the shelf in the area of the city of Gelendzhik. With the help of field multidisciplinary expedition ship surveys, it was shown that this eddy exists in the layer above the seasonal thermocline. At the periphery of the eddy weak variability of hydrochemical parameters and quantitative indicators of phytoplankton were recorded. The result of the formation of such eddy structure was a shift in the structure of phytoplankton – the annual observed coccolithophores bloom was not registered.


Sign in / Sign up

Export Citation Format

Share Document