scholarly journals Radio Echo Sounding (RES) investigations at Talos Dome (East Antarctica): bedrock topography and ice thickness

2009 ◽  
Vol 46 (6) ◽  
Author(s):  
C. Bianchi ◽  
L. Cafarella ◽  
P. De Michelis ◽  
A. Forieri ◽  
M. Frezzotti ◽  
...  
1975 ◽  
Vol 15 (73) ◽  
pp. 137-150 ◽  
Author(s):  
David J. Drewry

AbstractThe errors involved in ice thickness determinations in Antarctica by seismic reflection shooting, gravity observations and radio-echo sounding are briefly discussed. Relative accuracies of 3%, 7-10% and 1.5% have been suggested. Double checks of ice depths from radar sounding in east Antarctica indicate an internal consistency of measurement for this technique of <1%. Comparison of carefully executed seismic shooting and routine radio-echo sounding results against absolute ice thickness values from two deep core drilling sites show no significant differences between these two remote methods (i.e. both are better than 1.5%).Over 60 comparisons are examined between radar ice thicknesses and over-snow measurements obtained on eight independent traverses in east Antarctica. Three traverses exhibit consistently unacceptable results-U.S. Victoria Land Traverse II (southern leg), Commonwealth Transanlarctic Expedition and the U.S.S.R. Vostok to South Pole Traverse—which probably result from misinterpretation of “noisy” seismograms. The remaining comparisons indicate mean differences, including some navigational uncertainty, of ≈3%, <8% and 5% between radio-echo and (1) seismic, (2) gravity, and (3) gravity tied to seismic determinations, respectively.


1987 ◽  
Vol 9 ◽  
pp. 160-165
Author(s):  
S. Mae ◽  
M. Yoshida

Airborne radio echo-sounding was carried out in order to measure the thickness of the ice sheet in the Shirase Glacier drainage basin and map the bedrock topography. It was found that the elevation of bedrock was approximately at sea-level from Shirase Glacier to 100 km up-stream of the glacier and thereafter it was 500–100 m higher. Investigation of the echo intensity reflected from the bedrock indicates that at ice thicknesses less than 1000 m absorption was about 5.2 dB/100 m, but at greater ice thicknesses echo intensity did not depend upon the ice thickness but became approximately constant. Where ice thicknesses were greater than 1000 m in the main flow area of the Shirase Glacier drainage basin, the reflection strengths of about 9 dB were greater than outside the basin. Since the increase in echo intensity was considered to be due to the existence of water, the strong echo observed in the main part of the basin supported an hypothesis that the base of the basin was wet and the ice sheet was sliding on the bedrock.


1987 ◽  
Vol 9 ◽  
pp. 160-165 ◽  
Author(s):  
S. Mae ◽  
M. Yoshida

Airborne radio echo-sounding was carried out in order to measure the thickness of the ice sheet in the Shirase Glacier drainage basin and map the bedrock topography. It was found that the elevation of bedrock was approximately at sea-level from Shirase Glacier to 100 km up-stream of the glacier and thereafter it was 500–100 m higher. Investigation of the echo intensity reflected from the bedrock indicates that at ice thicknesses less than 1000 m absorption was about 5.2 dB/100 m, but at greater ice thicknesses echo intensity did not depend upon the ice thickness but became approximately constant. Where ice thicknesses were greater than 1000 m in the main flow area of the Shirase Glacier drainage basin, the reflection strengths of about 9 dB were greater than outside the basin. Since the increase in echo intensity was considered to be due to the existence of water, the strong echo observed in the main part of the basin supported an hypothesis that the base of the basin was wet and the ice sheet was sliding on the bedrock.


2004 ◽  
Vol 39 ◽  
pp. 366-372 ◽  
Author(s):  
David M. Rippin ◽  
Jonathan L. Bamber ◽  
Martin J. Siegert ◽  
David G. Vaughan ◽  
Hugh F. J. Corr

AbstractAirborne radio-echo sounding investigations in the upper reaches of Bailey Ice Stream and Slessor Glacier, Coats Land, East Antarctica, have shown that enhanced-flow tributaries are associated with well-defined areas of relatively thicker ice, and are separated from each other by areas of relatively thinner ice. A numerical modelling study has revealed that while internal ice deformation might account for all the observed flow in inter-tributary areas and the majority in the Slessor tributaries, a significant proportion of the flow of Bailey tributary is attributable to basal motion. Further, investigations of depth-corrected basal reflection power indicate that the bed underlying both Bailey and Slessor enhanced-flow tributaries is significantly smoother than in the slower-moving inter-tributary areas. It is thus proposed that enhanced motion within Bailey tributary (and also perhaps Slessor) may be facilitated by a reduction in basal roughness, caused by the accumulation of water and/or sediments within subglacial valleys, or by the erosion and smoothing of bed obstacles.


1975 ◽  
Vol 15 (73) ◽  
pp. 137-150 ◽  
Author(s):  
David J. Drewry

AbstractThe errors involved in ice thickness determinations in Antarctica by seismic reflection shooting, gravity observations and radio-echo sounding are briefly discussed. Relative accuracies of 3%, 7-10% and 1.5% have been suggested. Double checks of ice depths from radar sounding in east Antarctica indicate an internal consistency of measurement for this technique of &lt;1%. Comparison of carefully executed seismic shooting and routine radio-echo sounding results against absolute ice thickness values from two deep core drilling sites show no significant differences between these two remote methods (i.e. both are better than 1.5%).Over 60 comparisons are examined between radar ice thicknesses and over-snow measurements obtained on eight independent traverses in east Antarctica. Three traverses exhibit consistently unacceptable results-U.S. Victoria Land Traverse II (southern leg), Commonwealth Transanlarctic Expedition and the U.S.S.R. Vostok to South Pole Traverse—which probably result from misinterpretation of “noisy” seismograms. The remaining comparisons indicate mean differences, including some navigational uncertainty, of ≈3%, &lt;8% and 5% between radio-echo and (1) seismic, (2) gravity, and (3) gravity tied to seismic determinations, respectively.


2022 ◽  
Vol 14 (1) ◽  
pp. 241
Author(s):  
Sergey Popov

This study demonstrates the results of Russian airborne radio-echo sounding (RES) investigations and also seismic reflection soundings carried out in 1971–2020 over a vast area of coastal part of East Antarctica. It is the first comprehensive summary mapping of these data. Field research, equipment, errors of initial RES data, and methods of gridding are discussed. Ice thickness, ice base elevation, and bedrock topography are presented. The ice thickness across the research area varies from a few meters to 3620 m, and is greatest in the local subglacial depressions. The average thickness is about 1220 m. The total volume of the ice is about 710,500 km3. The bedrock heights vary from 2860 m below sea level in the ocean bathyal zone to 2040 m above sea level in the Grove Mountains area (4900 m relief). The main directions of the bedrock orographic forms are concentrated mostly in three intervals: 345∘–30∘, 45∘–70∘, and 70∘–100∘. The bottom melting rate was estimated on the basis of the simple Zotikov model. Total annual melting under the study area is about 0.633 cubic meters. The total annual melting in the study area is approximately 1.5 mm/yr.


2007 ◽  
Vol 53 (181) ◽  
pp. 289-297 ◽  
Author(s):  
Sergey V. Popov ◽  
Valery N. Masolov

AbstractDuring the summer field seasons of 1987–91, studies of central East Antarctica by airborne radio-echo sounding commenced. This scientific work continued in the 1990s in the Vostok Subglacial Lake area and along the traverse route from Mirny, and led to the discovery of 16 new subglacial water cavities in the areas of Domes Fuji and Argus and the Prince Charles Mountains. Twenty-nine subglacial water cavities were revealed in the area near Vostok, along with a feature we believe to be a subglacial river. Two subglacial lakes were discovered along the Mirny–Vostok traverse route. These are located 50 km north of Komsomolskaya station and under Pionerskaya station. We find high geothermal heat flux in the vicinity of the largest of the subglacial lakes, and suggest this may be due to their location over deep faults where additional mantle heat is available.


1986 ◽  
Vol 8 ◽  
pp. 156-158 ◽  
Author(s):  
Arne Chr. Saetrang ◽  
Bjørn Wold

The paper describes instrumentation, navigation methods, and interpretation problems from radio echo-sounding on parts of Jostedalsbreen. A map of the subglacial topography is presented. Ice thickness ranges from 60 m to 600 m with most sections between 150 m and 300 m.


1999 ◽  
Vol 29 ◽  
pp. 267-272 ◽  
Author(s):  
D. Steinhage ◽  
U. Nixdorf ◽  
U. Meyer ◽  
H. Miller

AbstractSince the austral summer of 1994-95 the Alfred Wegener Institute has carried out airborne radio-echo sounding (RES) measurements in Antarctica with its newly designed RES system. Since 1995-96 an ongoing pre-site survey for an ice-coring drill site in Dronning Maud Land has been carried out as part of the European Project for Ice Goring in Antarctica. The survey covers an area of 948 000 km2, with >49 500 km of airborne RES obtained from >200 hours of flight operation flown during the period 1994-97. In this paper, first results of the airborne RES survey are graphically summarized as newly derived maps of the ice thickness and subglacial topography, as well as a three-dimensional view of surface and subglacial bed and outcrop topography, revealing a total ice volume of 1.48 x 106 km3.


2005 ◽  
Vol 17 (3) ◽  
pp. 453-460 ◽  
Author(s):  
MARTIN J. SIEGERT ◽  
SASHA CARTER ◽  
IGNAZIO TABACCO ◽  
SERGEY POPOV ◽  
DONALD D. BLANKENSHIP

The locations and details of 145 Antarctic subglacial lakes are presented. The inventory is based on a former catalogue of lake-type features, which has been subsequently reanalysed, and on the results from three additional datasets. The first is from Italian radio-echo sounding (RES) of the Dome C region of East Antarctica, from which 14 new lakes are identified. These data also show that, in a number of occasions, multiple lake-type reflectors thought previously to be individual lakes are in fact reflections from the same relatively large lake. This reduces the former total of lake-type reflectors by six, but also adds a significant level of information to these particular lakes. The second dataset is from a Russian survey of the Dome A and Dome F regions of East Antarctica, which provides evidence of 18 new lakes and extends the coverage of the inventory considerably. The third dataset comprises three airborne RES surveys undertaken by the US in East Antarctica over the last five years, from which forty three new lakes have been identified. Reference to information on Lake Vostok, from Italian and US surveys taken in the last few years, is now included.


Sign in / Sign up

Export Citation Format

Share Document